• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, June 30, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Extra “eye” movements are the key to better self-driving cars

Bioengineer by Bioengineer
June 22, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Andrea Benucci and colleagues at the RIKEN Center for Brain Science has developed a way to create artificial neural networks that learn to recognize objects faster and more accurately. The study, recently published in the scientific journal PLOS Computational Biology, focuses on all the unnoticed eye movements that we make, and shows that they serve a vital purpose in allowing us to stably recognize objects. These findings can be applied to machine vision, for example, making it easier for self-driving cars to learn how to recognize important features on the road.

Human-like eye movements improve object recognition in machine vision

Credit: RIKEN

Andrea Benucci and colleagues at the RIKEN Center for Brain Science has developed a way to create artificial neural networks that learn to recognize objects faster and more accurately. The study, recently published in the scientific journal PLOS Computational Biology, focuses on all the unnoticed eye movements that we make, and shows that they serve a vital purpose in allowing us to stably recognize objects. These findings can be applied to machine vision, for example, making it easier for self-driving cars to learn how to recognize important features on the road.

Despite making constant head and eye movements throughout the day, objects in the world do not blur or become unrecognizable, even though the physical information hitting our retinas changes constantly. What likely make this perceptual stability possible are neural copies of the movement commands. These copies are sent throughout the brain each time we move and are thought to allow the brain to account for our own movements and keep our perception stable.

In addition to stable perception, evidence suggests that eye movements, and their motor copies, might also help us to stably recognize objects in the world, but how this happens remains a mystery. Benucci developed a convolutional neural network (CNN) that offers a solution to this problem. The CNN was designed to optimize the classification of objects in a visual scene while the eyes are moving.

First, the network was trained to classify 60,000 black and white images into 10 categories. Although it performed well on these images, when tested with shifted images that mimicked naturally altered visual input that would occur when the eyes move, performance dropped drastically to chance level. However, classification improved significantly after training the network with shifted images, as long as the direction and size of the eye movements that resulted in the shift were also included.

In particular, adding the eye movements and their motor copies to the network model allowed the system to better cope with visual noise in the images. “This advancement will help avoid dangerous mistakes in machine vision,” says Benucci. “With more efficient and robust machine vision, it is less likely that pixel alterations—also known as ‘adversarial attacks’—will cause, for example, self-driving cars to label a stop sign as a light pole, or military drones to misclassify a hospital building as an enemy target.”

Bringing these results to real world machine vision is not as difficult as it seems. As Benucci explains, “the benefits of mimicking eye movements and their efferent copies implies that ‘forcing’ a machine-vision sensor to have controlled types of movements, while informing the vision network in charge of processing the associated images about the self-generated movements, would make machine vision more robust, and akin to what is experienced in human vision.”

The next step in this research will involve collaboration with colleagues working with neuromorphic technologies. The idea is to implement actual silicon-based circuits based on the principles highlighted in this study and test whether they improve machine-vision capabilities in real world applications.



Journal

PLoS Computational Biology

DOI

10.1371/journal.pcbi.1009928

Share12Tweet7Share2ShareShareShare1

Related Posts

Male evening grosbeak

Oregon State survey suggests charismatic songbird’s numbers have dramatically declined

June 29, 2022
Reconstructed sea bed scenes

Shrimps and worms among first animals to recover after largest mass extinction

June 29, 2022

Major chords and melodies may not universally be perceived as happier than minor music, according to study of remote Papua New Guinea communities

June 29, 2022

NUS research brings new light to unsolved genetic diseases in children

June 29, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsZoology/Veterinary ScienceVirologyVirusVaccineViolence/CriminalsWeaponryUrogenital SystemUniversity of WashingtonUrbanizationVehiclesVaccines

Recent Posts

  • The art of getting DNA out of decades-old pickled snakes
  • Clashes of inference and perspective explain why children sometimes lose the plot in conversation
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers
  • New research: Up to 540,000 lives could be saved worldwide by targeting speed and other main areas
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....