• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Expression of certain genes may affect vulnerability to post-traumatic stress disorder

Bioengineer by Bioengineer
June 2, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study identifies the potential importance of a gene in the brain and a gene in the blood

IMAGE

Credit: McLean Hospital

Highlights

  • In a recent study, genes were predicted to be expressed at different levels in the tissues of individuals with PTSD compared with those without PTSD

  • Individuals with PTSD tended to have a lower expression of a gene called SNRNP35 in the brain, and they had a higher expression of a gene called ZNF140 in the blood

  • Examining how the expression of these genes affects PTSD susceptibility may point to new treatment and prevention strategies

Results from a new study suggest that whether certain genes are expressed — turned on or off– may play a role in susceptibility to post-traumatic stress disorder (PTSD). The study, which was conducted by an international team led by investigators at McLean Hospital and appears in the journal Cell Reports, may provide insights for PTSD prevention and treatment.

In the face of repeated, prolonged, or severe trauma, some individuals seem to be more susceptible to PTSD while others are resilient. Identifying which individuals may be susceptible to PTSD–and why–can help researchers develop effective interventions.

To investigate, scientists used genetic data from 195,684 individuals (29,539 with PTSD and 166,145 without), collected by the Psychiatric Genomics Consortium–PTSD Group (PGC-PTSD), to predict the expression patterns of genes in the brain and other tissues based on machine learning models. The team found two genes that were genetically predicted to be expressed at different levels in individuals with PTSD compared with those without PTSD.

Individuals with PTSD tended to have lower expression of a gene called SNRNP35 in the brain and higher expression of a gene called ZNF140 in the blood.

The researchers noted that SNRNP35 expression seems to be important in a region of the brain involved with managing stress. They also found that giving mice a high dose of a stress hormone decreases the expression of the SNRNP35 gene in the brain.

Regarding the ZNF140 gene, the protein coded by the gene is known to affect the expression of genes in immune cells circulating in the blood. Therefore, higher expression of ZNF140 may influence the body’s immune response to increase susceptibility to PTSD.

“Our study provides a road map for follow-up studies to link PTSD risk with vulnerable populations and to develop and validate biological tests and ‘druggable targets’ for prevention and treatment,” said lead author Nikolaos P. Daskalakis, MD, PhD, director of Neurogenomics and Translational Bioinformatics Laboratory at McLean Hospital.

The researchers noted that additional studies are also needed to uncover the detailed mechanisms behind different genes’ effects on PTSD susceptibility and resilience.

“Identifying the genetic influences of PTSD could help us understand how the body responds to traumatic experiences and may point to new interventions to help affected patients,” said senior author Kerry J. Ressler, MD, PhD, chief scientific officer and chief of McLean Hospital’s Center of Excellence in Depression and Anxiety Disorders.

###

Funding source: Dr. Daskalakis was funded by a 2015 and a 2018 NARSAD Young Investigator grant from BBRF, a Jonathan Edward Brooking mental health research fellowship from McLean Hospital, and an appointed KL2 award from Harvard Catalyst | The Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences KL2TR002542, UL1TR002541). Dr. Ressler and PGC-PTSD were funded by Cohen Veterans Bioscience, the National Institute of Mental Health (NIMH) /U.S. Army Medical Research and Materiel Command grant R01MH106595, and One Mind Institute.

ABOUT McLEAN HOSPITAL:

McLean Hospital has a continuous commitment to put people first in patient care, innovation and discovery, and shared knowledge related to mental health. In 2017 and 2018, it was named the #1 hospital for psychiatric care in the United States by U.S. News & World Report. McLean Hospital is the largest psychiatric affiliate of Harvard Medical School and a member of Partners HealthCare. For more information, please visit https://www.mcleanhospital.org/ or follow us on Facebook or Twitter.

Media Contact
Laura Neves
[email protected]

Original Source

https://www.mcleanhospital.org/news?field_post_type_tid=17

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2020.107716

Tags: GenesMedicine/HealthMental Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover New Switch That Triggers Programmed Cell Death

November 3, 2025
blank

Agricultural Practices: A Key Factor in the Preservation or Degradation of Protected Areas

November 3, 2025

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Asymmetric Supercapacitor via Ni-Doped MnMoO4 & CNTs

Enhancing Adolescent Health Literacy: Insights from Nurses

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.