• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Exploring peptide clumping for improved drug and material solutions

by
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
3D render of a molecular model of a peptide
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from China have investigated how short peptide chains aggregate together in order to deepen our understanding of the process, which is crucial for drug stability and material development. Their study, published in JACS Au, provides valuable insights into how short proteins called peptides interact, fold, and function. These findings have significant implications for medicine, material science, and biotechnology.

Scientists from China have investigated how short peptide chains aggregate together in order to deepen our understanding of the process, which is crucial for drug stability and material development. Their study, published in JACS Au, provides valuable insights into how short proteins called peptides interact, fold, and function. These findings have significant implications for medicine, material science, and biotechnology.

Peptides are short chains of amino acids that play essential roles in the body by building structures, speeding up chemical reactions, and supporting our immune system. The specific function of a protein is determined by how its amino acids interact with each other and aggregate into a three-dimensional structure.

The research team used molecular dynamics simulations together with advanced AI techniques, including deep learning models like Transformer Regression Networks, to predict how various peptides of four or five amino acids (tetrapeptides and pentapeptides, respectively) would aggregate based on their amino acid sequence. 

By analysing 160,000 tetrapeptides and 3.2 million pentapeptides, they discovered that certain amino acids, particularly aromatic ones like tryptophan, phenylalanine, and tyrosine, significantly enhance aggregation, especially when located towards one end (the C-terminus) of the peptide chain. This is probably because aromatic amino acids have ring-shaped structures that attract each other through their electron clouds, normally termed as “π-π” interactions, which helps them clump together. By contrast, hydrophilic amino acids, such as aspartic acid and glutamic acid, inhibit aggregation due to the strong interaction with water molecules that prevents the peptides from sticking together.

The study also showed that changing the amino acid sequence affects aggregation. For example, adding aromatic amino acids to the end of the peptide chain increases aggregation, while placing negatively charged amino acids at the beginning reduces it. The team also found that peptides clump together into different shapes based on the types and positions of their amino acids.

“Amino acids with a charge generally cause peptides to form long, thread-like structures, while those that avoid water tend to create round, ball-like clusters,” explains Dr Wenbin Li, an assistant professor at Westlake University and corresponding author of the study. “We also discovered that by understanding how tetrapeptides stick to each other, we can predict how pentapeptides will behave, making it easier to predict how longer peptides will clump together.”

The findings provide important guidelines for predicting and managing how peptides aggregate. “This knowledge could help in creating new materials, designing more stable drugs and drug delivery systems, and understanding diseases linked to peptide aggregation, such as Alzheimer’s disease, where clumped amyloid-beta peptides form damaging plaques in the brain,” says Dr Jiaqi Wang, an assistant professor at Xi’an Jiaotong-Liverpool University (XJTLU) and first author of the study. 

“It can also improve biotechnology, such as semiconductors, biosensors and diagnostics, ensuring these tools work accurately and consistently.

“By offering new insights into peptide aggregation, this research is set to advance biochemistry, materials science, and computational biology. It also demonstrates the integration of AI into scientific discovery. These advances could lead to breakthroughs in medical treatments, eco-friendly products, and innovative technologies.



Journal

JACS Au

DOI

10.1021/jacsau.4c00501

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Aggregation Rules of Short Peptides

Article Publication Date

3-Sep-2024

COI Statement

The authors declare no conflict of interest

Share12Tweet8Share2ShareShareShare2

Related Posts

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

Complete Synthesis of Hemiketal Tetrodotoxin Achieved

September 19, 2025
Early Universe Galaxies Unveil Hidden Dark Matter Maps

Early Universe Galaxies Unveil Hidden Dark Matter Maps

September 18, 2025

Chicago Quantum Exchange-Led Coalition Reaches Final Stage in NSF Engine Competition

September 18, 2025

“First-ever observation of quantum squeezing in a nanoscale particle”

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.