• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 25, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Exploring dynamics of blood flow in vascular, atherosclerotic diseases

Bioengineer by Bioengineer
May 10, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, May 10, 2022 – Medical interventions, such as improving diet, lowering blood lipids, or controlling blood pressure and blood sugar, can only do so much when it comes to treating atherosclerotic disease. Is it possible to make earlier predictions for risk factors for plaque formation within the carotid arteries via characteristics of vascular structure and the dynamics of blood flow before the disease progresses?

3D reconstruction of a carotid artery stenosis vessel

Credit: Zhiyong Song, Pengrui Zhu, Lianzhi Yang, Zhaohui Liu, Hua Li, and Weiyao Zhu

WASHINGTON, May 10, 2022 – Medical interventions, such as improving diet, lowering blood lipids, or controlling blood pressure and blood sugar, can only do so much when it comes to treating atherosclerotic disease. Is it possible to make earlier predictions for risk factors for plaque formation within the carotid arteries via characteristics of vascular structure and the dynamics of blood flow before the disease progresses?

In Physics of Fluids, from AIP Publishing, researchers in China present clinicians with information about the risk factors for atherosclerotic plaque formation from a mechanical point of view. The scientists are exploring whether it is possible to screen and intervene early for people at risk for atherosclerotic disease from the perspective of hemodynamics, using color Doppler ultrasound, coronary computed tomography angiography, and other screenings.

“Carotid endarterectomy and carotid artery stenting are the main methods for treatment of carotid artery stenosis,” said Zhiyong Song, from the University of Science and Technology Beijing. “Changes of postoperative vascular structure and fluid mechanics are important for restenosis, so determining how to minimize risk factors of postoperative flow is important for improving the therapeutic effect.”

A multipoint, noncontact laser flow measurement method called microparticle image velocimetry (Micro-PIV) was used by the researchers, something they said has been continuously improved during the past few decades and exceeds the limitations of single-point measurement technologies.

“It could record speed distribution information on a large number of spatial points within the same transient state to provide rich spatial structure of flow field and flow characteristics,” said Song.

The researchers discovered a significant gap between their study and the clinical method in terms of wall shear strength calculation, which could lead to confusion about the physiological mechanism.

“Based on the plateau-like distribution of the velocity field at the central carotid stenosis location shown by Micro-PIV and simulations, the current clinical estimation method of wall shear stress at the stenosis location could result in a difference of up to 60%,” Song said.

The group’s hemodynamic study of carotid atherosclerotic plaque has important clinical significance for understanding the formation and development mechanism of atherosclerotic disease, improving surgical treatment technology, and researching and developing future medical devices.

###

The article “Study on the radial sectional velocity distribution and wall shear stress associated with carotid artery stenosis” is authored by Zhiyong Song, Pengrui Zhu, Lianzhi Yang, Zhaohui Liu, Hua Li, and Weiyao Zhu. The article will appear in Physics of Fluids on May 10, 2022 (DOI: 10.1063/5.0085796). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0085796.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0085796

Article Title

Study on the radial sectional velocity distribution and wall shear stress associated with carotid artery stenosis

Article Publication Date

10-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

What's behind a monkey's poker face?

Some apes might pull a poker face

May 25, 2022
Two strongly bonded male Guinea baboons (Papio papio)

When male buddies become less important than female mating partners

May 25, 2022

HKU Conservation Forensics Lab develops novel environmental DNA monitoring method for identifying rare and endangered fish species sold in Hong Kong wet markets

May 25, 2022

First Australians ate giant eggs of huge flightless birds, ancient proteins confirm

May 25, 2022

POPULAR NEWS

  • Masks

    Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesWeaponryVirusVehiclesUniversity of WashingtonViolence/CriminalsVaccineZoology/Veterinary ScienceUrbanizationWeather/StormsVirologyUrogenital System

Recent Posts

  • Microsoft Imagine Cup: Jacobs University students win World Championship
  • Why COVID vaccines are deemed non-essential for UK young children
  • The Cinderella Project: The right to see yourself in the mirror and like what you see
  • Some apes might pull a poker face
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....