• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Experts reduce search times for novel high-entropy alloys 13,000-fold using Cuckoo Search

Bioengineer by Bioengineer
January 14, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Process developed by scientists at Iowa State University and Lehigh University using a hybrid Cuckoo Search – inspired by bird evolutionary strategy – accelerates computational modeling of complex alloys – a stunning example data improving manufacturing

IMAGE

Credit: Ames Laboratory, U.S. Department of Energy

A major roadblock to computational design of high-entropy alloys has been removed, according to scientists at Iowa State University and Lehigh University. Engineers from the Ames Lab and Lehigh University’s Department of Mechanical Engineering and Mechanics have developed a process that reduces search time used for predictive design 13,000-fold.

According to Ganesh Balasubramanian, an associate professor at Lehigh, the goal of the team’s research was to accelerate the computational modeling of complex alloys. The tools available for creating random distribution of atoms in materials simulation models, he says, have been used for many, many years now and are limited in their reach for fast model generation.

Apart from being resource intensive and lacking exhaustivity, says Balasubramanian, the time duration necessary to generate robust models for materials simulations are extensive even with supercomputing advances. The team has now overcome this hurdle by developing a hybrid version of an algorithm called the Cuckoo Search, which is inspired by the evolutionary strategy of Cuckoo birds.

“The speed up to solution time was not surprising, but the factor reduction in time?13,000-fold?was indeed startling,” says Balasubramanian. “What took about a day to accomplish, can now be done in seconds. This tool can expedite model generation, but also enable creation of physically realizable systems that now can be directly compared against experimental samples.”

The research is described in a paper published in Nature Computational Science called “Accelerating computational modeling and design of high-entropy alloys” (DOI: 10.1038/s43588-020-00006-7). In addition to Balasubramanian, authors include: Duane D. Johnson, engineering faculty at Iowa State University and faculty scientist at Ames Laboratory, as well as Rahul Singh, Aayush Sharma and Prashant Singh.

High-entropy alloys are alloys that are formed by mixing equal or relatively large proportions of five or more elements. Balasubramanian works specifically with multi-principal element alloys, a new class of materials and a superset of high-entropy alloys which are alloys formed by mixing significant and varying proportions of multiple elements. These are different from conventional alloys such as steel, which is mostly made of iron. Preliminary studies have demonstrated that multi-principal element alloys have superior mechanical strength and hardness, making them ideal as a protective coating on components like turbine blades, medical implants, ship surfaces, and aerospace parts.

“The purpose of our work on this was to optimize alloy design and, due to the results, we hope it will change design practices in materials for the better,” says Balasubramanian.

There are many areas that use optimization such as stock markets, commerce and engineering systems design. While developed using materials simulations as a testbed, this computational tool is applicable to any area of work requiring optimization, says Balasubramanian.

###

Balasubramanian’s work on this was supported by a National Science Foundation CAREER grant. Ames Laboratory is a U.S. Department of Energy Office of Science National Laboratory operated by Iowa State University.

Media Contact
Lori Friedman
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s43588-020-00006-7

Tags: Algorithms/ModelsChemistry/Physics/Materials SciencesComputer ScienceMaterialsMechanical EngineeringResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    72 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating AI Scribes: Frameworks and Outcomes

Survey Reveals Healthcare Providers’ Views on Enzyme Therapy

Nursing Competence in Hunan’s Traditional Medicine Hospitals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.