• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Experiments with roundworms suggest alternatives for the treatment of schizophrenia

Bioengineer by Bioengineer
March 19, 2019
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers used C. elegans as an animal model to investigate the importance of certain human genes for the treatment of schizophrenia.

IMAGE

Credit: Mirian Hayashi (EPM-UNIFESP)

A group of Brazilian scientists have long conducted experiments with roundworms to investigate the role of schizophrenia-linked genes in patients’ response to antipsychotic drugs. The results obtained thus far point to new ways of understanding resistance to certain classes of medication.

The studies are conducted by researchers in the Pharmacology Department of the Federal University of São Paulo’s Medical School (EPM-UNIFESP), collaborating with colleagues at the University of Campinas (UNICAMP). An article on some of the findings has been published in the journal Progress in Neuro-Psychopharmacology and Biological Psychiatry.

Schizophrenia is a highly complex mental disorder with unknown causes and no cure. Pharmacological treatment consists basically of the administration of antipsychotic drugs that control symptoms and help the patient manage social interaction. First- and second-generation antipsychotics act on the nervous system, mainly by blocking two neurotransmitters, dopamine and serotonin, which play several important roles in the brain.

First-generation or typical antipsychotics are dopamine receptor blockers. Second-generation or atypical antipsychotics block both dopamine and serotonin receptors. Some individuals with schizophrenia do not respond to typical antipsychotics and are considered treatment-refractory patients.

The group’s latest study set out to determine at the molecular level why some patients respond to second-generation but not first-generation antipsychotics.

“Schizophrenic patients are known to have lower levels of activity of a specific enzyme called NDEL1 [nuclear distribution element-like 1]. The levels of activity are even lower in treatment-resistant patients,” said Mirian Hayashi, a professor at EPM-UNIFESP and principal investigator for the study.

Hayashi explained that NDEL1 contributes to the degradation of neurotransmitters that play an important role in the brain’s functioning. “In our study, we found that NDEL1 may be linked to the development of schizophrenia,” she said.

One way to characterize the action of a protein is to use animals that have been genetically modified so as not to express the molecule of interest. These are known as knockout animals.

“We normally use mice or rats as animal models, but in the specific case of our research on NDEL1, this isn’t possible. Embryos of rodents that don’t express NDEL1 aren’t viable – they don’t develop in utero,” Hayashi said.

The alternative is to use an invertebrate, Caenorhabditis elegans, a nematode or roundworm with a length of approximately 1 mm found worldwide in moist soil.

The study described in the article was supported by FAPESP – São Paulo Research Foundation. The ongoing research is part of the National Institute of Science and Technology in Bioanalysis, which is funded by FAPESP and Brazil’s National Council for Scientific and Technological Development (CNPq).

Common ancestor

C. elegans lacks the gene that encodes NDEL1, but it has other similar genes. Nuclear distribution elements or NDE genes are present in the genomes of fungi and of vertebrates and invertebrates, such as insects, mollusks and nematodes.

This is because NDEs were inherited from a common ancestor of fungi and animals that lived more than 1.5 billion years ago. Since then, the ancestral gene has changed as new groups of living beings evolved, but its function has remained similar.

In mammals, for example, NDE1 and NDEL1 play an important role in brain development and neuron guidance. In C. elegans, the same functions are encoded by the genes NUD-1 and NUD-2.

“We decided to use C. elegans nematodes that had been genetically modified to suppress NUD-1 and NUD-2 and treat them with antipsychotics used to treat schizophrenia. The idea was to investigate the importance of these proteins in schizophrenics,” Hayashi said.

The study began with suppression of the NUD genes in nematodes divided into three groups. The control group comprised unmodified nematodes. The second and third strains consisted of knockout strains in which either NUD-1 or NUD-2 had been silenced.

The groups were treated with a typical antipsychotic (a first-generation drug that blocks dopamine receptors), an atypical antipsychotic (a second-generation drug that blocks dopamine and serotonin receptors), or saline as a control.

“For the experiments, we used these three strains and compared the behavior of each one with and without treatment via the first-generation drug [haloperidol] or the second-generation drug [clozapine], which were administered separately,” Hayashi said.

“To evaluate the role of NUD genes and antipsychotic drugs in the behavior of C. elegans, we measured the frequency of body movement [locomotion], oviposition [egg laying], and pharyngeal pumping. All these are characteristics controlled by neurons and specific neurotransmitters such as dopamine and serotonin, which are involved in schizophrenia.”

C. elegans is tiny, and the researchers used a magnifying glass to observe the worms used in these experiments. Each group comprised between six and ten worms. To infer whether they were affected by the drugs, in the specific case of locomotion, the researchers observed their movements and the distances traveled.

“Frequent zigzagging movements were considered a sign of action by the drugs. This enabled us to establish whether the absence of NUD genes influenced the effectiveness of the drugs in acting on the dopamine and serotonin pathways,” Hayashi said.

Egg-laying behavior was analyzed by counting the number of eggs. In the case of pharyngeal pumping, the scientists observed whether feeding rates were normal or displayed alterations.

“The findings suggest that the absence of NUD and hence of the enzyme expressed by this gene may influence the response to these drugs. The activity of NDEL1 could therefore predict the response to treatment,” Hayashi said.

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
Joao Carlos Silva
 @AgencyFAPESP

55-113-838-4381

Related Journal Article

http://dx.doi.org/10.1016/j.pnpbp.2018.12.010

Tags: Medicine/HealthMental HealthNeurochemistryPharmaceutical ChemistryPharmaceutical SciencePharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025
Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

August 21, 2025

Atomically Thin Material Wrinkles Pave the Way for Ultra-Efficient Electronics

August 21, 2025

Exploring Dark Matter Through Exoplanet Research

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

New Study Reveals How Lymphoma Reconfigures the Human Genome

Revolutionizing Prosthetic Legs: Innovations Through Data-Driven Design

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.