• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Experiment unveils Berry curvature mechanism for linear positive magnetoresistance

Bioengineer by Bioengineer
November 8, 2022
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research group lead by Prof. LIU Enke from the Institute of Physics of the Chinese Academy of Sciences (CAS) has established a physical model of Berry-curvature-dominated linear positive magnetoresistance (LPMR), providing experimental evidence for this mechanism. 

The schematic illustration of Berry curvature induced LPMR and the fitting of experimental data to theoretical equations

Credit: Institute of Physics

A research group lead by Prof. LIU Enke from the Institute of Physics of the Chinese Academy of Sciences (CAS) has established a physical model of Berry-curvature-dominated linear positive magnetoresistance (LPMR), providing experimental evidence for this mechanism. 

Relevant results were published on PNAS on Nov. 2. 

Berry curvature, the pseudomagnetic field in momentum space, is the origin of many transport phenomena including chiral anomaly and intrinsic anomalous transverse transport properties. In topological materials, Berry curvature is extremely large because of special band structures, e.g., Dirac nodes, Weyl nodes, and nodal lines. 

LPMR is a transport phenomenon whereby longitudinal resistance of a material varies linearly and positively with magnetic field. Although large LPMR has been widely reported in topological materials, the explanations for it in topological materials are ambiguous. 

In view of this, researchers in LIU’s group and their collaborators investigated the relation between Berry curvature and LPMR based on a topological material candidate, cobalt disulfide (CoS2). 

Their study showed that, in theory, the slope of LPMR is proportional to the average of the Berry curvature around the Fermi surface. 

They proposed temperature-dependent anomalous Hall conductivity and LPMR equations based on a 3D-Weyl-node model. The experimental data of CoS2 and other topological materials reported previously can be fitted to the theoretical temperature-dependent equations, which is evidence for Berry-curvature-dominated LPMR. 

This study unveils the relationship between Berry curvature and LPMR, thus facilitating the understanding and functional design of LPMR materials for magnetic sensing or information storage. 

This work was supported by the National Science Foundation of China, the Ministry of Science and Technology of China, and CAS. 



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.220850511

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Scaling of Berry-curvature monopole dominated large linear positive magnetoresistance

Article Publication Date

2-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025
Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferroptosis Links to Acute Kidney Disease Genes

Transforming Biomedical Engineering Education in the Philippines

TLR4 Polymorphisms Increase Risk in CMV-Positive Pregnancies

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.