• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Experiment measures velocity in 3D

Bioengineer by Bioengineer
October 15, 2019
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Illinois Department of Aerospace Engineering


Many of today’s scientific processes are simulated using computer-driven mathematical models. But for a model to accurately predict how air flow behaves at high speeds, for example, scientists need supplemental real life data. Providing validation data, using up-to-date methods, was a key motivating factor for a recent experimental study conducted by researchers at the University of Illinois at Urbana-Champaign.

“We created a physical experiment that could measure the flow field that others try to simulate with computational models to predict turbulence. It validates their models and gives them additional data to compare their results against, particularly in terms of velocity,” said Kevin Kim, a doctoral student in the Department of Aerospace Engineering.

Kim said the wind tunnel that was built and the design of the experiments were based on simple geometry and fundamental physics that allowed them to manipulate two streams of air flow, one from an air tank and the other from ambient room air. There is a physical barrier between the two streams before they reach the test section of the wind tunnel, where they begin to mix. Images are taken of seed particles in the flow.

“There are two nozzles that come after the air tank. We changed the geometry of one of the nozzles to change the overall Mach number, then studied the different mixing layers where the two flows meet,” Kim said. “Depending on the different speeds of the two streams coming in, you start to see different characteristics of the mixing.”

The primary free stream speed started at subsonic Mach 0.5, and increased to 2.5 in 0.5 increments. The secondary free stream was all subsonic, below Mach 1.

Kim said that in most previous experiments of this flow field, velocity has generally only been measured in two directions: in the direction of the freestream and perpendicular to it. What made this experiment unique is that velocity measurements were also taken in the span-wise direction for all of the different Mach numbers.

“Low speed, incompressible cases, are largely characterized by two-dimensional mixing, so you can get a lot of important information from just looking at the X and Y components,” Kim said. “Because we increased the Mach number, the compressibility goes up in the shear layer. Consequently, we see wider-scale mixing in the span-wise direction that we didn’t see when it was incompressible. A key target of the work was to make sure we got that third component of velocity in order to understand how it relates to the overall turbulence with changing compressibility. And also to capture the incoming flow conditions, the boundary layers.”

According to Kim, only two other mixing layer experiments have been performed that obtained all three components of velocity. “Our results match up with theirs, which validates our own experiments, but we took it further by measuring the flow for a wide range of Mach numbers.”

He said one direct real-world application for this work is for improving scramjet combustion, in which supersonic air comes in through the combustor and mixes with fuel.

“Scientifically, the main application is the fact that we have these results for a very fundamental flow field that simulators now can use to validate their models. In addition, all of our data are available to the public through a University of Illinois Wiki page,” Kim said. “I hope that a lot of people use this information in their modeling and that it can ultimately help improve the accuracy and advance the methods in high-speed flow simulations.”

###

The study, “Three-Dimensional Experimental Study of Compressibility Effects on Turbulent Free Shear Layers,” written by Kevin U. Kim, Gregory S. Elliott, and J. Craig Dutton is published in the AIAA Journal.

Media Contact
Gregory S. Elliott
[email protected]
217-265-9211

Original Source

https://aerospace.illinois.edu/news/experiment-measures-velocity-3d

Related Journal Article

http://dx.doi.org/10.2514/1.J058556

Tags: Algorithms/ModelsComputer TheoryTechnology/Engineering/Computer ScienceVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

Snacking Habits Linked to Sleep Issues in Children

October 11, 2025

KLF5 Boosts Lung Cancer Spread via RHPN2 Pathway

October 11, 2025

Creating Trauma-Informed Care for the Homeless

October 11, 2025

Linking Emotional Intelligence, Loneliness, and Eating Disorders

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1206 shares
    Share 482 Tweet 301
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    84 shares
    Share 34 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Snacking Habits Linked to Sleep Issues in Children

KLF5 Boosts Lung Cancer Spread via RHPN2 Pathway

Creating Trauma-Informed Care for the Homeless

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.