• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Expanding the VR immersion comfort zone

Bioengineer by Bioengineer
September 19, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Near-eye displays are emerging as the future of portable devices, providing individuals with immersive virtual reality experiences. The primary objectives in developing these displays are to create immersive experiences and ensure visual comfort. While a larger field of view (FOV) enhances immersion in virtual reality, addressing the Vergence-Accommodation-Conflict (VAC) is crucial for comfortable vision. Researchers have explored innovative approaches to tackle these challenges. A significant breakthrough in near-eye displays is the integration of light field technology. However, earlier light field displays in VR were limited by their small size and low resolution, resulting in constrained viewing angles and screen window effects. The authors of a paper published recently in the Journal of Optical Microsystems successfully overcame these limitations by utilizing a 3.1-inch 3k3k LC display. Nevertheless, the transition to high-resolution VR LCD displays presented material and process challenges that demanded attention.

A prototype demonstration of high-resolution light field displays for enhanced virtual experiences.

Credit: The Authors doi 10.1117/1.JOM.3.4.041202.

Near-eye displays are emerging as the future of portable devices, providing individuals with immersive virtual reality experiences. The primary objectives in developing these displays are to create immersive experiences and ensure visual comfort. While a larger field of view (FOV) enhances immersion in virtual reality, addressing the Vergence-Accommodation-Conflict (VAC) is crucial for comfortable vision. Researchers have explored innovative approaches to tackle these challenges. A significant breakthrough in near-eye displays is the integration of light field technology. However, earlier light field displays in VR were limited by their small size and low resolution, resulting in constrained viewing angles and screen window effects. The authors of a paper published recently in the Journal of Optical Microsystems successfully overcame these limitations by utilizing a 3.1-inch 3k3k LC display. Nevertheless, the transition to high-resolution VR LCD displays presented material and process challenges that demanded attention.

The research highlights the importance of employing high-resolution liquid crystal displays (LCDs) to address light field resolution issues. The authors elaborate on strategies to enhance LCD resolution, including aperture and contrast ratios through specialized pixel designs and driving techniques. Additionally, the paper explores novel applications of light field technology beyond its use in VR displays, namely, in vision correction for VR systems.

“By utilizing light field technology, both vision correction and the expansion of the eyebox are achieved, thereby elevating the overall virtual reality experience and enhancing user comfort,” said Yung-Hsun Wu, one of the researchers from Innolux Corporation in Taiwan.

The paper investigates the optics of light field virtual reality, demonstrating the creation of elemental image (EI) arrays through a lens array and spatially multiplexed light field optics. This approach generates volumetric virtual images that accurately simulate proper eye accommodation, eliminating the need to address VAC.

The authors focus on a recently developed INNOLUX LCD with impressive resolution and pixel density. By introducing a 15-degree tilt between panels, the binocular FOV is expanded, ensuring exceptional angular resolution. The Modulation Transfer Function (MTF) across the image field guarantees the faithful reproduction of high-quality images.

Furthermore, the paper addresses visual correction within the realm of light field VR. It introduces a ray tracing-based graphical process called “corrected eye box mapping,” facilitating the correction of myopia, hyperopia, and astigmatism. This procedure takes into account parameters like spherical power (SPH), cylinder power (CYL), and cylinder axis (AXIS) for comprehensive visual correction.

In conclusion, the paper offers a comprehensive exploration of the development of high-resolution light field displays, encompassing advancements in display design, pixel architecture, and vision correction through the integration of light field technology. This research significantly contributes to the progression of light field displays, paving the way for enriched visual experiences within high-resolution VR systems.

Read the Gold Open Access paper by Wu et al., “Enhancing virtual reality with high-resolution light field liquid crystal display technology,” J. Opt. Microsys. 3(4) 041202 (2023) doi: 10.1117/1.JOM.3.4.041202. 



Journal

Journal of Optical Microsystems

DOI

10.1117/1.JOM.3.4.041202

Article Title

Enhancing virtual reality with high-resolution light field liquid crystal display technology

Article Publication Date

13-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Figure 1: A case of emissions and transport of PM2.5 in Punjab to Delhi NCR in November 2-4, 2022 due to CRB.

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

October 2, 2023
A set of 33 droplets fabricated to create “OMU” using the optical vortex laser-induced printing technique

Next-generation printing: precise and direct, using optical vortices

October 2, 2023

Researchers studied thousands of fertility attempts hoping to improve IVF

October 2, 2023

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In