• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, February 6, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Expanding the arsenal of drugs against COVID-19

Bioengineer by Bioengineer
December 9, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tokyo Medical and Dental University (TMDU) have developed novel compounds with potential as drug treatments for COVID-19 by modifying a previous “hit” compound that was active against the SARS-CoV virus

Expanding the arsenal of drugs against COVID-19

Credit: Department of Medicinal Chemistry, TMDU

Researchers from Tokyo Medical and Dental University (TMDU) have developed novel compounds with potential as drug treatments for COVID-19 by modifying a previous “hit” compound that was active against the SARS-CoV virus

Tokyo, Japan – The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, has been devastating the entire world. While the vaccination program is advancing, drug treatments for COVID-19 are still highly important for those who become infected. Now, a team at Tokyo Medical and Dental University (TMDU), National Center for Global Health and Medicine (NCGM), Tohoku University, NCI/NIH, and Kumamoto University has designed and synthesized compounds that have the potential to be novel drugs targeting SARS-CoV-2.

The SARS-CoV-2 virus contains an enzyme called the “main protease”, or Mpro, that cleaves other proteins encoded in the SARS-CoV-2 genome as part of viral activity and replication. Mpro is an important and appealing target for drugs treating COVID-19 because it is both essential for viral replication and very different from any human molecules, so drugs targeting Mpro are likely to have few side effects and be very effective.

When testing a panel of compounds known to have inhibitory activity against SARS-CoV, the virus responsible for the 2002 SARS outbreak, the team identified a compound named 5h/YH-53 that showed some activity inhibiting SARS-CoV-2 Mpro, but was inefficient and unstable. Therefore, they used 5h as a starting point to develop other compounds with increased efficiency and stability. “Our strategy involved introducing fluorine atoms into the part of the molecule responsible for inhibiting Mpro to increase its binding affinity, as well as replacing a bond within 5h that is easily broken down by the liver with a different structure to increase biostability,” explains lead author Kohei Tsuji.

“Of the compounds we developed, compound 3 showed high potency and was able to block SARS-CoV-2 infection in vitro without any viral breakthrough,” explains senior author Hirokazu Tamamura. “Compound 4, a derivative of compound 3 in which an easily broken-down amide bond had been replaced with a stable thioamide bond, also showed remarkable anti-SARS-CoV-2 activity.” Although compound 4 had lower Mpro inhibitory activity than compound 3, the increased stability meant that the overall activity of compound 4 was comparable to that of compound 3.

When they tested these novel compounds on a variety of strains of SARS-CoV-2, compound 3 was as effective on mutant strains of the virus as on the ancestral Wuhan strain. Additionally, neither compound 3 or 4 showed any toxicity to cultured cells. These data suggest that these compounds show high potential as drug treatments for COVID-19.

A repertory of drug choice is important for treating disease, and so the development of efficient drugs to target the novel SARS-CoV-2 virus is highly important. This work identifies two compounds as potential drugs, and further development of these compounds continues. It also proves the principle that easily broken-down amide bonds can be replaced with thioamide bonds in drug development to increase the stability of the resulting compounds. Taken together, this is an important advance in both the wider drug development field as well as for drugs to treat COVID-19.

###

The article, “Potent and Biostable Inhibitors of the Main Protease of SARS-CoV-2”, was published in iScience at DOI: 10.1016/j.isci.2022.105365
 



Journal

iScience

DOI

10.1016/j.isci.2022.105365

Article Title

Potent and biostable inhibitors of the main protease of SARS-CoV-2

Share12Tweet8Share2ShareShareShare2

Related Posts

road

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023
Lifetime Uncertainty and Level of Violence Global Map

Living in a violent setting can result in a shorter, but also a more unpredictable lifespan, according to new research from NYU Abu Dhabi social scientists

February 3, 2023

Harnessing an innate protection against Ebola

February 3, 2023

Signal transmission in the immune and nervous system through NEMO

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In