• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, January 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Expanding gene therapy for rare disease that causes blindness

Bioengineer by Bioengineer
January 19, 2023
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Houston researcher is expanding a method of gene therapy with the hopes it will restore vision loss in Usher Syndrome Type 2A (USH2A), a rare genetic disease. The National Eye Institute has awarded Muna Naash, John S. Dunn Endowed Professor of biomedical engineering, $1.6 million to support her work. 

Muna Naash, University of Houston John S. Dunn Endowed Professor of biomedical engineering

Credit: University of Houston

A University of Houston researcher is expanding a method of gene therapy with the hopes it will restore vision loss in Usher Syndrome Type 2A (USH2A), a rare genetic disease. The National Eye Institute has awarded Muna Naash, John S. Dunn Endowed Professor of biomedical engineering, $1.6 million to support her work. 

Usher Syndrome Type 2A, caused by mutations of the USH2A gene, can include hearing loss from birth and progressive loss of vision, prompting retinitis pigmentosa (RP). RP affects the retina, the eye’s light-sensitive layer, leading to a breakdown of cells in the retina which causes blindness. Currently no treatment exists for USH2A. 

“Our goal is to advance our current intravitreal gene therapy platform consisting of DNA nanoparticles/hyaluronic acid nanospheres to deliver large genes in order to develop safe and effective therapies for visual loss in Usher Syndrome Type 2A,” said Naash. Gene therapy is the introduction of a normal gene into cells to correct genetic disorders. Intravitreal treatment consists of injections directly into the vitreal chamber of the eye.  

“Developing an effective treatment for USH2A has been challenging due to its large coding sequence (15.8 kb) that has precluded its delivery using standard approaches and the presence of multiple isoforms with functions that are not fully understood,” said Naash, who will also evaluate the long-term efficacy of the best therapeutic platform for future translation to the clinic. 

To rescue vision loss, Naash’s non-viral therapy targets the mutation in usherin, the protein product that causes Usher Syndrome Type 2A. Naash has already cloned two usherin isoforms to be tested with her innovative platform to safely advance gene therapy for USH2A. 

“Understanding which isoforms of usherin are expressed in the retina and the cochlea and what role they play (in contrast to mutant pathogenic forms) is essential in developing an effective gene therapy construct,” said Naash.  

The work will provide a solid foundation for understanding the function of each usherin isoform and developing an effective gene therapy platform to treat USH2A associated visual defects, she said. 



Share12Tweet8Share2ShareShareShare2

Related Posts

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

January 31, 2023
Photomicrograph of Cryptococcus deneoformans

Warmer climate may drive fungi to be more dangerous to our health

January 30, 2023

Machine learning identifies drugs that could potentially help smokers quit

January 30, 2023

Marburg vaccine shows promising results in first-in-human study

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

An illuminated water droplet creates an ‘optical atom’

Connections between peripheral artery disease, negative social determinants of health like poverty may lead to earlier diagnosis, intervention in at-risk Blacks

Monitoring an ‘anti-greenhouse’ gas: Dimethyl sulfide in Arctic air

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In