• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 9, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

EU project on development of high-performance photonic processors gets started

Bioengineer by Bioengineer
February 2, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Consortium headed by physicist Wolfram Pernice from Münster University acquires funding of almost €6 million

IMAGE

Credit: AG Pernice – xvivo

Artificial intelligence (AI) is seen as a key technology with fields of application in a wide variety of areas in society. However, researching, developing and, in particular, using AI systems presents enormous challenges for the computing power and storage capacity needed to process large data volumes. These are generated for example in internet applications such as the Internet of Things and broadband services such as HD video on demand and social media. Traditional electronic hardware is no longer able to meet this challenge. A new research alliance headed by Dr. Wolfram Pernice, a professor at the Institute of Physics at the University of Münster (Germany), is developing fast, energy-efficient optical hardware alternatives. The alliance is now to receive almost six million euros for this research, over four years, from the European Commission, as part of the FET Proactive (Horizon 2020) funding line. The research teams involved include those from the University of Exeter (UK) and École polytechnique fédérale de Lausanne (EPFL, Switzerland).

“Our modern electronic technologies are fast approaching their limit, from a physics point of view,” says Wolfram Pernice. “We need completely new methods for processing the enormous data volumes which are necessary for AI applications.”

More computing power and energy efficiency

The PHOENICS project (the acronym stands for “Photonic enabled petascale in-memory computing with femtojoule energy consumption”) aims to give a boost to the development of new computing resources. The researchers involved plan to create so-called photonic neuromorphic processors with unprecedented computing power and energy efficiency. In this case, “neuromorphic” means that the processors take inspiration from the human brain and that the information is processed and stored in one and the same place. In the case of traditional computers, the computing and data storage units are separate from each other. “Photonic” means that data are transported by means of light instead of electrons (as in traditional computers).

In the project, the PHOENICS consortium plans to use new types of materials to create the photonic neuromorphic processors. Another aim is to develop new methods of significantly increasing computing power.

The project is based on previous work done by Wolfram Pernice’s group. A few weeks ago, for example, the team published a study in Nature in which it presented a hardware accelerator for so-called matrix multiplications. These multipliers handle the main processing load within neuromorphic networks. The researchers had combined the photonic structures with phase change materials (PCMs) to create very fast and energy-efficient photonic processors. PCMs are normally used in optical data storage with DVDs or Blu-Ray discs. In the processor which the team described, this enables the matrix elements to be stored and preserved without any energy input being needed. The light source which the physicists used was a chip-based frequency comb. Such a light source provides different optical wavelengths which, independently of one another, are processed in the same system. This enables parallel data processing to be carried out.

###

Project title:

Photonic enabled petascale in-memory computing with femtojoule energy consumption (PHOENICS)

Institutes involved:

University of Münster (Germany), University of Exeter (UK), École polytechnique fédérale de Lausanne (EPFL, Switzerland), Nanoscribe GmbH (Germany), University of Oxford (UK), Fraunhofer Gesellschaft, Heinrich Hertz Institute (Germany), University of Ghent (Belgium), IBM Research GmbH (Switzerland), MicroR Systems Sarl (Switzerland)

EU Commission’s “FET Proactive” funding line

FET Proactive provides funding – thematically focused – for revolutionary, multidisciplinary technological research as a response to social and industrial challenges. The aim is to mature novel research themes in technology and to open up and develop the research landscapes necessary for this. The idea is to enable ambitious topics to be included when the relevant research communities are structured and set up – as well as when industrial research agendas are developed. FET Proactive is part of the EU’s “Horizon 2020” Framework Programme for Research and Innovation.

Media Contact
Prof. Dr. Wolfram Pernice
[email protected]

Original Source

https://www.uni-muenster.de/news/view.php?cmdid=11527&lang=en

Tags: Computer ScienceHardwareNanotechnology/MicromachinesOpticsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Research pinpoints unique drug target in antibiotic resistant bacteria

March 8, 2021
IMAGE

How fast is the universe expanding? Galaxies provide one answer.

March 8, 2021

Lights on for silicon photonics

March 8, 2021

Cheap, nontoxic carbon nanodots poised to be quantum dots of the future

March 8, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    703 shares
    Share 281 Tweet 176
  • People living with HIV face premature heart disease and barriers to care

    86 shares
    Share 34 Tweet 22
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Chemistry/Physics/Materials SciencesInfectious/Emerging DiseasesGeneticsTechnology/Engineering/Computer SciencecancerPublic HealthMedicine/HealthEcology/EnvironmentBiologyCell BiologyMaterialsClimate Change

Recent Posts

  • Research pinpoints unique drug target in antibiotic resistant bacteria
  • How fast is the universe expanding? Galaxies provide one answer.
  • Young white-tailed deer that disperse survive the same as those that stay home
  • Complement inhibition reverses mental losses in preclinical traumatic brain injury models
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In