• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Establishment of a pancreatic cancer animal model using the pancreas-targeted hydrodynamic gene delivery method

Bioengineer by Bioengineer
April 22, 2022
in Health
Reading Time: 2 mins read
0
Establishment of a Pancreatic Cancer Animal Model Using the Pancreas-Targeted Hydrodynamic Gene Delivery Method
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Niigata, Japan – The research group of Professor Kamimura in Niigata University have established a novel pancreatic carcinogenesis model in wild-type rats utilizing the pancreas-targeted selective hydrodynamic gene delivery method developed by their research group.

Establishment of a Pancreatic Cancer Animal Model Using the Pancreas-Targeted Hydrodynamic Gene Delivery Method

Credit: Niigata University

Niigata, Japan – The research group of Professor Kamimura in Niigata University have established a novel pancreatic carcinogenesis model in wild-type rats utilizing the pancreas-targeted selective hydrodynamic gene delivery method developed by their research group.

“The gene human pancreatic cancer-related gene transfer of the KRASG12D efficiently developed the pancreatic cancer”, says Prof. Kamimura. KRASG12D-induced pancreatic intraepithelial neoplasia lesions showed malignant transformation in the main pancreatic duct at four weeks and developed acinar-to-ductal metaplasia, which led to pancreatic ductal adenocarcinoma within five weeks and the gene combination of KRASG12D and YAP enhanced these effects.

In addition, the combination of oncogenes revealed the metastatic tumors in the liver, lymph nodes, etc., and invasive growth to the surrounding organ and tissues, mimicking the clinical course of human pancreatic cancer. The pancreas-targeted hydrodynamic gene delivery showed its efficacy in developing novel animal models and is promising methods for the organ specific gene therapy. Prof. Kamimura concluded that this pancreatic cancer model will speed up pancreatic cancer research for novel treatments and biomarkers for early diagnosis.



Journal

Molecular Therapy — Nucleic Acids

DOI

10.1016/j.omtn.2022.03.019

Article Title

Establishment of a pancreatic cancer animal model using the pancreas-targeted hydrodynamic gene delivery method

Article Publication Date

28-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Nurses’ Competence in Dementia Care: Current Insights

November 6, 2025

Ferroptosis in Diabetes: Insights from Research

November 6, 2025

Berberine boosts CYP3A4 expression through PXR activation

November 6, 2025

Novel Rhodanine–Sulfonate Compounds Inhibit Aldose Reductase

November 6, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Competence in Dementia Care: Current Insights

Ferroptosis in Diabetes: Insights from Research

Berberine boosts CYP3A4 expression through PXR activation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.