• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Establishing the origin of solar-mass black holes and the connection to dark matter

Bioengineer by Bioengineer
March 8, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Takhistov et. al.

What is the origin of black holes and how is that question connected with another mystery, the nature of dark matter? Dark matter comprises the majority of matter in the Universe, but its nature remains unknown.

Multiple gravitational wave detections of merging black holes have been identified within the last few years by the Laser Interferometer Gravitational-Wave Observatory (LIGO), commemorated with the 2017 physics Nobel Prize to Kip Thorne, Barry Barish, and Rainer Weiss. A definitive confirmation of the existence of black holes was celebrated with the 2020 physics Nobel Prize awarded to Andrea Ghez, Reinhard Genzel and Roger Penrose. Understanding the origin of black holes has thus emerged as a central issue in physics.

Surprisingly, LIGO has recently observed a 2.6 solar-mass black hole candidate (event GW190814, reported in Astrophysical Journal Letters 896 (2020) 2, L44). Assuming this is a black hole, and not an unusually massive neutron star, where does it come from?

Solar-mass black holes are particularly intriguing, since they are not expected from conventional stellar evolution astrophysics. Such black holes might arise in the early Universe (primordial black holes) or be “transmuted” from existing neutron stars. Some black holes could have formed in the early universe long before the stars and galaxies formed. Such primordial black holes could make up some part or all of dark matter. If a neutron star captures a primordial black hole, the black hole consumes the neutron star from the inside, turning it into a solar-mass black hole. This process can produce a population of solar mass black holes, regardless of how small the primordial black holes are. Other forms of dark matter can accumulate inside a neutron star causing its eventual collapse into a solar-mass black hole.

A new study, published in Physical Review Letters, advances a decisive test to investigate the origin of solar-mass black holes. This work was led by the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) Fellow Volodymyr Takhistov and the international team included George M. Fuller, Distinguished Professor of Physics and Director of the Center for Astrophysics and Space Science at the University of California, San Diego, as well as Alexander Kusenko, Professor of Physics and Astronomy at the University of California, Los Angeles and a Kavli IPMU Visiting Senior Scientist.

As the study discusses (see Fig. 1), “transmuted” solar-mass black holes remaining from neutron stars being devoured by dark matter (either tiny primordial black holes or particle dark matter accumulation) should follow the mass-distribution of the original host neutron stars. Since the neutron star mass distribution is expected to peak around 1.5 solar masses, it is unlikely that heavier solar-mass black holes have originated from dark matter interacting with neutron stars. This suggests that such events as the candidate detected by LIGO, if they indeed constitute black holes, could be of primordial origin from the early Universe and thus drastically affect our understanding of astronomy. Future observations will use this test to investigate and identify the origin of black holes.

Previously (see Fuller, Kusenko, Takhistov, Physical Review Letters 119 (2017) 6, 061101), the same international team of researchers also demonstrated that disruption of neutron stars by small primordial black holes can lead to a rich variety of observational signatures and can help us understand such long-standing astronomical puzzles as the origin of heavy elements (e.g. gold and uranium) and the 511 keV gamma-ray excess observed from the center of our Galaxy.

###

Media Contact
John Amari
[email protected]

Original Source

https://www.ipmu.jp/en/20210305-solar_mass_BH

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.126.071101

Tags: AstrophysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

The fate of the planet

April 16, 2021
IMAGE

The future of particle accelerators is here

April 16, 2021

Scientists may detect signs of extraterrestrial life in the next 5 to 10 years

April 16, 2021

On the pulse of pulsars and polar light

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineWeather/StormsVirusVirologyWeaponryVaccinesUrbanizationVehiclesUrogenital SystemZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • New amphibious centipede species discovered in Okinawa and Taiwan
  • USU researchers develop power converter for long-distance, underwater electric grids
  • The fate of the planet
  • The future of particle accelerators is here
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In