• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Escher’s angels and demons woodcut predicts how matter deforms

Bioengineer by Bioengineer
November 21, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study published in the prestigious Physical Review Letters

IMAGE

Credit: PRL Politecnico di Milano


Dutch artist M.C. Escher’s most famous drawing, “Circle Limit IV (Heaven and Hell)”, shows angels and demons in a tessellation that fills a circle without empty spaces. This masterful woodcut inspired an international partnership of researchers including Politecnico di Milano Physics Department to author the cover-story article published in Physical Review Letters (*).

This free and unconventional work-of-art has provided a valuable assistance to science.

The discovery

The researchers of Professor Paolo Biscari’s group, together with their colleagues discovered that the arrangement of angels and demons in the famous woodcut makes it possible to predict how a crystalline body will change its shape when subject to external action.

Escher’s woodcut is linked to the work of mathematicians who in the middle of the last century were exploring the properties of hyperbolic spaces:

The study’s subject showed a connection between these spaces and everyday phenomena such as the permanent plastic deformation of matter.

The work-of-art sparked a new approach to the mathematical description of complex material deformation phenomena problem.

The new approach mooted by the researchers indicates how crystalline lattice shapes can be associated with points in the hyperbolic space. During its deformations, the material changes shape, passing e.g. from one Escher’s angelic image to the next angel’s shape.

Crystal plasticity is due to the interactions of lattice defects that glide under the effect of the applied forces.

The model promises to become a new useful tool for the study and numerical simulation of microscopic plastic phenomena. Conventional theories cannot correctly describe many properties such as mechanical strength and its unpredictable fluctuations, which can generate true plastic avalanches.

Controlling these phenomena opens new paths for the design and development (guided by theory and simulation) of new materials to optimise micro-manufacturing processes.

###

Landau-type theory of planar crystal plasticity

R. Baggio, E. Arbib, P. Biscari, S. Conti, L. Truskinovsky, G. Zanzotto and O. U. Salman

Phys. Rev. Lett., 123, 205501 (2019)

Media Contact
Cristina Perini
[email protected]
39-022-399-2508

Original Source

https://www.polimi.it/?id=3936&tx_wfqbe_pi1[id]=1139

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.123.205501

Tags: Atomic PhysicsMaterialsMathematics/StatisticsNanotechnology/MicromachinesResearch/Development
Share13Tweet8Share2ShareShareShare2

Related Posts

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

September 5, 2025
Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

September 5, 2025

Discovery of Protostellar Jets in Milky Way’s Outer Regions Unveils Universal Star Formation Processes

September 5, 2025

Electron-Acceptor Engineering Tunes Dye Excitation Dynamics for Optimal Synergistic Photodynamic and Mild-Photothermal Tumor Therapy

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Timing Breast Milk Storage to Support Babies’ Circadian Rhythms, New Research Suggests

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

Ultra-Compact Plasmonic Nanocavity Boosts Magnetic SHG

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.