• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Epigenetic signaling axis regulates proliferation and self-renewal of neural stem/progenitor cells

Bioengineer by Bioengineer
June 13, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: LIU Changmei

Polycomb group (PcG) proteins comprise the Polycomb complexes PRC1 and PRC2 that regulate gene expression levels through histone modification. Although PRC1 and PRC2 are emerging as having important roles in cancer stem cells, their functions in neural stem/progenitor cells (NSPCs) are largely unknown.

In a recent study published in Stem Cell Reports, a team led by Drs. LIU Changmei and TENG Zhaoqian from the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology of the Chinese Academy of Sciences, found a novel epigenetic signaling axis (composed of PRC1, microRNA, and PRC2) that regulates self-renewal and proliferation of NSPCs.

The researchers generated an Ezh2 (a key PRC2 component) conditional knockout mouse model, and found that Ezh2 loss of function results in decreased self-renewal and proliferation ability in NSPCs.

They then discovered that Ezh2 represses the expression of miR-203, which negatively regulates self-renewal and proliferation of NSPCs, but promotes their neuronal differentiation capacity.

In addition, they demonstrated that Bmi1 (a PRC1 component) is a direct downstream target of miR-203, and ectopic overexpression of BMI1 can rescue the self-renewal and proliferation deficiency exhibited by miR-203 overexpression in NSPCs.

As PcG proteins and microRNAs are usually co-expressed, these findings might have significant implications for other cell types or cancer tissues.

###

This work was supported by grants from the National Science Foundation of China, National Science and Technology Major Projects, the State Key Laboratory of Stem Cell and Reproductive Biology, and the Hundred Talents Program of CAS.

Media Contact

LIU Changmei
[email protected]

http://english.cas.cn/

Related Journal Article

http://dx.doi.org/10.1016/j.stemcr.2017.05.007

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Revealing Sichuan Taimen’s Genome and Population Decline

September 27, 2025
Evaluating Salivary Biomarkers in Oral Cancer

Evaluating Salivary Biomarkers in Oral Cancer

September 27, 2025

Enhancing Oral Fat Sensitivity with Pure Milk Emulsions

September 27, 2025

Nicotine During Pregnancy Alters Colon Notch Genes

September 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    83 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Financial Struggles of Parents Caring for Eating Disorder

Emergency Medicine Professionals Experience Job Satisfaction Despite Challenges with Burnout and Staff Retention

Consuming Fruit Could Mitigate Air Pollution’s Impact on Lung Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.