• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, June 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Epigenetic changes promoting cancer metastasis identified

Bioengineer by Bioengineer
December 21, 2016
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Latest research from New Zealand's University of Otago is shedding new light on why and how cancer cells spread from primary tumours to other parts of the body. This phenomenon – known as metastasis – causes about 90 per cent of all cancer deaths.

The Otago findings, published in the leading international journal Oncotarget, may pave the way for new therapies that prevent melanoma and other cancers from their deadly seeding of secondary tumours.

Department of Pathology researchers Dr Aniruddha Chatterjee and Professor Mike Eccles are lead authors of the study, which investigated epigenetic changes in melanoma cells.

Epigenetics involves changes to the way genes behave – such as their being switched on or off through the addition of methyl groups to a gene's DNA segments.

After comparing primary and metastatic melanoma cells from the same patients, Dr Chatterjee says the research team identified thousands of epigenetic changes – and, crucially, several that were common to all the metastatic cells.

"We believe that these may be the key drivers that allow melanoma to metastasise," he says.

Additionally, the team identified a new function in melanoma of a gene called Early B Cell Factor 3 (EBF3).

"We found this gene gains more DNA methylation when primary melanoma progresses to its metastatic version, and that the gene expresses itself highly in the latter."

When the researchers used molecular techniques that decreased EBF3 expression, both primary and metastatic melanoma cells grew less aggressively and behaved less invasively.

Dr Chatterjee says earlier searches for genetic – rather than epigenetic – drivers of metastasis had not been very fruitful.

"Over the years, very few genetic mutations have been identified as drivers of metastasis. Instead, our approach looked at the changes in the way genes in cancer cells are expressed, rather than changes to the genetic code itself," he says.

Dr Chatterjee says unlike genetic changes, epigenetic changes are reversible.

"So if we understand the key changes that underpin metastasis, then not only are we potentially able to monitor for their presence, but also to design new therapies to target and correct them to prevent metastasis of tumours."

###

The research of mapping the epigenetic patterns was made possible through a cutting edge technique called Reduced Representation Bisulfite Sequencing (RRBS) that Dr Chatterjee, Dr Peter Stockwell (also a co-author in the recent paper) and colleagues at Otago have pioneered in New Zealand.

Media Contact

Aniruddha Chatterjee
[email protected]
@otago

http://www.otago.ac.nz

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Device

Rewrite Two frontiers: Illinois experts combine forces to develop novel nanopore sensing platform this news headline for the science magazine post

June 13, 2025
Distribution network architecture

Rewrite Review of active distribution network reconfiguration: Past progress and future directions this news headline for the science magazine post

June 13, 2025

Rewrite University of Cincinnati structural biology research published in prestigious PNAS this news headline for the science magazine post

June 13, 2025

Rewrite FDA approves immune checkpoint inhibitor drug for patients with resectable locally advanced head and neck cancer, backed by Dana-Farber research this news headline for the science magazine post

June 13, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    74 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    68 shares
    Share 27 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Two frontiers: Illinois experts combine forces to develop novel nanopore sensing platform this news headline for the science magazine post

Rewrite Review of active distribution network reconfiguration: Past progress and future directions this news headline for the science magazine post

Rewrite University of Cincinnati structural biology research published in prestigious PNAS this news headline for the science magazine post

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.