• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Enzyme may get key role in drug design for breast cancer and brain condition

Bioengineer by Bioengineer
June 29, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In recent years, researchers have focussed on the enzyme TLK2 suspecting it of playing a main role in several diseases. A new study conducted at the University of Copenhagen now reveals that the enzyme displays lower levels of activity in intellectual disability and that it is possible to inhibit it in breast cancer, where it is overactive. The study thus suggests that the enzyme may be a target for potential therapies.

In order to maintain genome stability in the cells the enzyme TLK2 constantly strives to attach phosphate to proteins. It activates specific functions in the cell and helps to stabilise the cell nucleus, which is of critical importance.

In recent years the enzyme has been linked to various diseases. For example, researchers have discovered that the gene coding for the enzyme is overexpressed in patients suffering from ER-positive breast cancer and mutated in intellectual disability, but up until now no one has been able to outline the behaviour of the enzyme.

Now researchers from the University of Copenhagen and Institute for Research in Biomedicine Barcelona have taken a big step forwards and managed to outline the enzyme all the way to the molecular level using X-ray crystallography. Their study, which has just been published in the scientific journal Nature Communications, suggests that the enzyme activity diminishes in patients suffering from intellectual disability. Conversely, it seems to be possible to inhibit the enzyme in patients with breast cancer, where it is overactive.

'We are outlining the structure of this important and interesting enzyme. Once we know how it is structured, it will be much easier to develop drugs targeted at the enzyme, either inhibiting or strengthening it. This study thus points directly to drug design, as it has identified some concrete mechanisms that must be taken into account', says Head of the Study Guillermo Montoya, Professor at the Novo Nordisk Foundation Center for Protein Research.

Specific Genetics Inhibit the Enzyme

The researchers have studied the enzyme in detail at molecular level. They have used biochemical methods and advanced techniques within molecular biophysics to produce a so-called molecular description of the enzyme's crystal structure. This is important because it gives the researchers insight into the behaviour of the enzyme at atomic level.

They have also taken as their starting point previous studies showing that patients suffering from intellectual disability have a mutation in genes affecting the TLK2 enzyme. In this study they show that there is indeed a link between the genes and the enzyme, as these same genetic mutations compromise the activity of the enzyme.

In addition, they have drawn on knowledge from other studies revealing that the enzyme is overactive in so-called ER-positive breast cancer. On this basis they have tested several so-called small molecule drugs and learned that it is possible to inhibit the activity of the enzyme in material isolated from human cells.

The researchers will now seek to learn more about how the enzyme can be targeted and either be inhibited or activated in patients with these conditions.

###

Media Contact

Mathias Traczyk
[email protected]
459-356-5835

http://healthsciences.ku.dk/

https://healthsciences.ku.dk/news/2018/06/enzyme-may-get-key-role-in-drug-design-for-breast-cancer-and-brain-condition/

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-04941-y

Share12Tweet8Share2ShareShareShare2

Related Posts

Improved Esophageal Cancer Prognosis Through Lymph Node Analysis

September 30, 2025

Preoperative HBsAg Clearance Improves Liver Cancer Outcomes

September 30, 2025

PM2.5 Heightens Breast Cancer Deaths in Inner Mongolia

September 30, 2025

Unveiling EUDAL: The RNA That Protects Oral Cancer from Drug Treatment

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Post-COVID Recovery: Insights from Irish Seniors and Caregivers

Bank Vole: A New Frontier in Biological Research

Improved Esophageal Cancer Prognosis Through Lymph Node Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.