• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Genetics

Ensuring the integrity of our genetic material during reproduction

Bioengineer by Bioengineer
May 1, 2016
in Genetics
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

This news release is available in German.

Our genetic material – our DNA – must be stable; so that it can be passed on from generation to generation and life can persist. On the other hand, it must be versatile to allow for genetic variety and evolution. DNA breaks are introduced on purpose during reproduction to guarantee faithful chromosome distribution. But they also arise for example from damaging environmental factors or toxic metabolic products. Luckily, nature has devised a number of sophisticated processes that repair DNA breaks.

Mosaic DNA arises during the generation of egg and sperm cells

Since her Postdoc years, Verena Jantsch from the Max F. Perutz Laboratories (MFPL) has been interested in chromosomes and the processes ensuring their proper distribution into cells and their integrity. “DNA double strand breaks comprise one type of DNA damage. They are for example part of a cut and paste mechanism to create mosaic chromosomes and so introducing genetic variety in egg and sperm cells. In addition, they are crucial for connecting chromosomes – a precondition for accurate distribution of chromosomes into egg and sperm cells. They are repaired by a process called homologous recombination where the DNA damage is repaired from an identical copy of DNA present in the same cell,” explains Verena Jantsch, one of the Berta Karlik Professors of the University of Vienna. Important for the outcome of homologous recombination is a machine called RTR complex, which consists of several protein factors. Mutations in these factors result in genetic instability and promote cancer development.

Keeping DNA breaks in check

Marlene Jagut, Postdoc in Verena Jantsch’s lab together with collaborators from Anne Villeneuve’s lab at Stanford University and Arndt von Haeseler at MFPL could now show that one of the RTR complex factors – RMI – has several crucial functions during the repair of DNA double strand breaks. She explains: “Using a genetic model system, we showed that RMI is required for defining the position and maturation of homologous recombination events along chromosomes. Mutations in RMI led to both undesirable connections between chromosomes and incompletely repaired DNA breaks, all leading to chromosomal abnormalities in the germ cells.”

The findings not only contribute to our understanding of the role of the RTR complex in the generation of egg and sperm cells, but may also prove helpful in understanding cancer-related processes. In the future Verena Jantsch and her team would like to learn more about how the RTR complex directs the outcome of homologous recombination. Several advantages of their model system will allow them to study how the RTR complex contributes to the final steps during the maturation of the connection between chromosomes. This late function of the RTR machinery during recombination had gone unnoticed in previous studies.

###

Publication in PLoS Biology:

Marlène Jagut, Patricia Hamminger, Alexander Woglar, Sophia Millonigg, Luis Paulin, Martin Mikl, Maria Rosaria Dello Stritto, Lois Tang, Cornelia Habacher, Angela Tam, Miguel Gallach, Arndt von Haeseler, Anne M. Villeneuve and Verena Jantsch: Separable Roles for a Caenorhabditis elegans RMI1 Homolog in Promoting and Antagonizing Meiotic Crossovers Ensure Faithful Chromosome Inheritance. In: PLoS Biology (March 2016)

DOI: http://dx.doi.org/10.1371/journal.pbio.1002412

Media Contact

Lilly Sommer
[email protected]
43-142-772-4014
@univienna

http://www.univie.ac.at/en/

The post Ensuring the integrity of our genetic material during reproduction appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Amino acid recycling in cells: Autophagy helps cells adapt to changing conditions

December 10, 2020
IMAGE

Cataloging nature’s hidden arsenal: Viruses that infect bacteria

December 10, 2020

Within a hair’s breadth–forensic identification of single dyed hair strand now possible

December 9, 2020

£1m step closer to understanding genetic diseases

December 9, 2020
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    67 shares
    Share 27 Tweet 17
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Early Gut Microbiome in Preterms Linked to Early Human Milk

How Hemagglutinin Changes Affect H5N1 Virus Fitness

New Maps Indicate India May Face the Greatest Impact from Chikungunya

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.