• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Enhancing thermo-electrochemical cell efficiency

Bioengineer by Bioengineer
November 6, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The beloved character Lightening Man, a children’s hero, and the protagonist of the popular action series, Moving, possess the extraordinary ability to harness electricity at will. Remarkably, the generation of electricity from the human body may not be a superpower at all; rather, it appears to be a commonplace occurrence. Recent attention-grabbing research conducted by a team of POSTECH (Pohang University of Science and Technology) researchers has intensified the interest of the academic community, particularly for their efforts in enhancing the efficiency of a thermo-electrochemical cell capable of generating electricity from the human body’s natural temperature.

Inside back cover

Credit: Advanced Functional Materials

The beloved character Lightening Man, a children’s hero, and the protagonist of the popular action series, Moving, possess the extraordinary ability to harness electricity at will. Remarkably, the generation of electricity from the human body may not be a superpower at all; rather, it appears to be a commonplace occurrence. Recent attention-grabbing research conducted by a team of POSTECH (Pohang University of Science and Technology) researchers has intensified the interest of the academic community, particularly for their efforts in enhancing the efficiency of a thermo-electrochemical cell capable of generating electricity from the human body’s natural temperature.

 

The study was led by Professor Yong-Tae Kim from the Department of Materials Science and Engineering and Graduate Institute of Ferrous & Eco Materials Technology, and Dr. Sang-Mun Jung and Seung-Yeon Kang, a master’s student, from the Department of Materials Science and Engineering at POSTECH in collaboration with Professor Dongwook Lee from the Department of Materials Science and Engineering at Hongik University. Their collective achievement revolves around the increased efficiency of thermo-electrochemical cells, which can convert wasted thermal energy or body temperature into electricity. The research findings are set to be published as a featured article on the inside back cover of the international journal, Advanced Functional Materials.

 

When electricity goes unused in either a household or an industrial setting, it dissipates as thermal energy. The concept of thermal energy harvesting has emerged as a solution to counteract energy depletion and address the climate crisis by harnessing electricity from this waste heat and human body heat. However, these cells, which electrochemically transform heat into electricity, face a significant challenge due to their low energy conversion efficiency and their reliance on precious metal catalysts like platinum, hindering their commercial viability.

 

To surmount this limitation, the research team employed an iron-based catalyst along with perchloric acid (CIO4-) anions. In essence, increasing the chaotropicity within the cell’s electrolyte generally results in higher voltage and increased current, thereby enhancing the cell’s efficiency. The introduction of perchloric acid was instrumental in augmenting the chaotropicity of the electrolyte, which contained iron ion redox pairs (Fe2+/F23+), thus improving the overall efficiency of the cell.

 

Furthermore, the team introduced a catalyst (Fe-N-C) composed of iron, nitrogen, and carbon to the thermo-electrochemical cell. This catalyst, frequently utilized in hydrogen vehicle fuel cells as an alternative to expensive platinum catalysts, represented an application in a thermo-electrochemical cell for the first time. In test trials, these cells achieved over twice the energy conversion efficiency compared to conventional cells while simultaneously reducing production costs by a factor of 3,000.

 

Professor Yong-Tae Kim commented, “Through our exploration of thermo-electrochemical cell catalysis, a relatively uncharted territory, we have successfully enhanced both efficiency and cost-effectiveness within the system.” He added, “We anticipate its widespread adoption in energy harvesting applications designed to generate energy from waste heat.”

 

The research was sponsored by the Future Material Discovery Program of the National Research Foundation of Korea.



Journal

Advanced Functional Materials

DOI

10.1002/adfm.202304067

Article Title

Fe─N─C Electrocatalyst for Enhancing Fe(II)/Fe(III) Redox Kinetics in Thermo-Electrochemical Cells

Article Publication Date

2-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BFGF Protects Ovaries from CTX Toxicity via Signaling

Continuous Tracking of Left Ventricular dP/dtmax

Examining Occupational Gaps and Cognitive Decline in Seniors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.