• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Enhanced photoelectrochemical water splitting with a donor-acceptor polyimide

Bioengineer by Bioengineer
January 17, 2024
in Chemistry
Reading Time: 2 mins read
0
Illustration of the PI synthesis process
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Polyimide (PI) has emerged as a promising organic photocatalyst owing to its distinct advantages of high visible-light response, facile synthesis, molecularly tunable donor-acceptor structure, and excellent physicochemical stability. However, the synthesis of high-quality PI photoelectrode remains a challenge, and photoelectrochemical (PEC) water splitting for PI has been less studied.

Illustration of the PI synthesis process

Credit: HIGHER EDUCATION PRESS

Polyimide (PI) has emerged as a promising organic photocatalyst owing to its distinct advantages of high visible-light response, facile synthesis, molecularly tunable donor-acceptor structure, and excellent physicochemical stability. However, the synthesis of high-quality PI photoelectrode remains a challenge, and photoelectrochemical (PEC) water splitting for PI has been less studied.

 

A research group of Huiyan Zhang and Sheng Chu from Southeast University prepared PI films by a simple spin-coating method for the first time. They adopted four dianhydrides with different conjugate sizes of aromatic unit (phenyl, biphenyl, naphthalene, perylene) to construct the corresponding D-A PI photoelectrodes, named PI-PM, PI-BP, PI-NT, and PI-PT, respectively. Their PEC properties were investigated, and the influence of the conjugate size of aromatic unit (phenyl, biphenyl, naphthalene, perylene) of electron acceptor on PEC performance was studied.

 

 

It was found that the fused ring was prominent in improving the light absorption capacity of PI, but excessive fused rings were unfavorable for the photogenerated charge separation. Of all the samples, the PI-NT film exhibits the highest photocurrent response, which is ascribed to its wide-range light absorption, efficient charge separation and transport, and strong photooxidation capacity. However, the photocurrent response of the PI film presented here needs to be improved for efficient PEC water splitting, which can be enhanced by catalyst modification (e.g., elemental doping, and composite engineering) or optimizing the preparation method of films in subsequent work.

 

This work is not only a starting point of PI films for PEC water splitting, but also an enlightenment for the rational design of polymer photocatalysts for efficient PEC applications.



Journal

Frontiers in Energy

DOI

10.1007/s11708-023-0910-8

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Enhanced photoelectrochemical water splitting with a donor-acceptor polyimide

Article Publication Date

29-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.