• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, June 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2

Bioengineer by Bioengineer
April 25, 2023
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Excessive use of fossil energy causes global warming and other environmental problems. To reduce the greenhouse effect, two major greenhouse gases-CO2 and CH4 as the feedback are used to produce syngas (CO and H2) by CO2-CH4 reforming technique (DRM). The key to DRM is the choice of catalyst. The catalyst for DRM reaction mainly consists of two parts: the active metal and the support, in which a suitable support plays an important role in promoting the reaction activity and stability. Currently, ZrO2 is considered as a promising catalyst support due to the presence of oxygen vacancies. However, studies on the effect of oxygen vacancies on the ZrO2 surface for CO2 adsorption and activation processes are still lacking.

Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2

Credit: HIGHER EDUCATION PRESS LIMITED COMPANY

Excessive use of fossil energy causes global warming and other environmental problems. To reduce the greenhouse effect, two major greenhouse gases-CO2 and CH4 as the feedback are used to produce syngas (CO and H2) by CO2-CH4 reforming technique (DRM). The key to DRM is the choice of catalyst. The catalyst for DRM reaction mainly consists of two parts: the active metal and the support, in which a suitable support plays an important role in promoting the reaction activity and stability. Currently, ZrO2 is considered as a promising catalyst support due to the presence of oxygen vacancies. However, studies on the effect of oxygen vacancies on the ZrO2 surface for CO2 adsorption and activation processes are still lacking.

A research group of Juntian Niu from Taiyuan University of Technology investigated the effect of oxygen vacancies for the adsorption and activation of CO2 on the surface ZrO2 by density functional theory (DFT) calculations. They found that the oxygen vacancies contribute greatly to both the adsorption and activation of CO2, and the essence lies in oxygen vacancies greatly facilitate the charge transfer from the ZrO2 surface to the CO2 molecule. Additionally, it was found that t-ZrO2 with the presence of oxygen vacancies is most favorable to the adsorption and activation of CO2 by the comparison of different ZrO2 crystalline phases.

The new findings elucidated the role of oxygen vacancies in CO2 adsorption and activation for the preparation of high-performance DRM reaction catalysts using ZrO2. Meanwhile, it provided guidance for the design of CO2 high-efficient catalysts at an atomic level.

These findings were published in Frontiers in Energy on February 28.

###

About Higher Education Press

Founded in May 1954, Higher Education Press Limited Company (HEP), affiliated with the Ministry of Education, is one of the earliest institutions committed to educational publishing after the establishment of P. R. China in 1949. After striving for six decades, HEP has developed into a major comprehensive publisher, with products in various forms and at different levels. Both for import and export, HEP has been striving to fill in the gap of domestic and foreign markets and meet the demand of global customers by collaborating with more than 200 partners throughout the world and selling products and services in 32 languages globally. Now, HEP ranks among China’s top publishers in terms of copyright export volume and the world’s top 50 largest publishing enterprises in terms of comprehensive strength.

The Frontiers Journals series published by HEP includes 28 English academic journals, covering the largest academic fields in China at present. Among the series, 12 have been indexed by SCI, 6 by EI, 2 by MEDLINE, 1 by A&HCI. HEP’s academic monographs have won about 300 different kinds of publishing funds and awards both at home and abroad.

 

About Frontiers in Energy

Frontiers in Energy, a peer-reviewed international journal launched in January 2007, presents a unique platform for reporting the most advanced research and strategic thinking on energy technology. The Journal publishes review and mini-review articles, original research articles, perspective, news & highlights, viewpoints, comments, etc. by individual researchers and research groups. The journal is strictly peer-reviewed and accepts only original submissions in English. The scope of the Journal covers (but not limited to): energy conversion and utilization; renewable energy; energy storage; hydrogen and fuel cells; carbon capture, utilization and storage; advanced nuclear technology; smart grids and microgrids; power and energy systems; power cells and electric vehicles; building energy conservation, energy and environment; energy economy and policy, etc. Interdisciplinary papers are encouraged.

 



Journal

Frontiers in Energy

DOI

10.1007/s11708-023-0867-7

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2

Article Publication Date

28-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Dr. Alex Herrera

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

June 4, 2023
Ana Oaknin, Principal Investigator of the Vall d’Hebron Institute of Oncology’s (VHIO) Gynecological Malignancies Group

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

June 3, 2023

Carbon-based stimuli-responsive nanomaterials: classification and application

June 3, 2023

ASCO: Targeted therapy induces responses in HER2-amplified biliary tract cancer

June 3, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phase 3 SWOG Cancer Research Network trial, led by a City of Hope researcher, demonstrates one-year progression-free survival in 94% of patients with Stage 3 or 4 classic Hodgkin lymphoma who received a checkpoint inhibitor combined with chemotherapy

The promise of novel FolRα-targeting antibody drug conjugate in recurrent epithelial ovarian cancer

Carbon-based stimuli-responsive nanomaterials: classification and application

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In