• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Enhanced ceramics could play pivotal role in advancing 5G technology

Bioengineer by Bioengineer
March 23, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some 5G technologies still considered the wild west in material, design development

IMAGE

Credit: Skyworks Solutions

WASHINGTON, March 23, 2021 — 5G, or the fifth-generation technology standard for broadband cellular networks, is touted as having finally arrived for ultrafast download speeds, an end to dropped calls and buffering, and greater connectivity to advance autonomous vehicle development, remote surgery, and the Internet of Things.

In truth, 5G technology adoption is still in its early stages, according to Michael Hill, technical director of Skyworks Solutions, a California-based advanced-semiconductor company. In their paper, published in Applied Physics Letters, by AIP Publishing, Hill and his colleagues provide an overview on nascent 5G technologies and show how enhancing ceramic materials could play a pivotal role in 5G development.

5G operates in two frequency bands: 3-6 gigahertz for long-distance links and a much higher frequency band in the millimeter wave region (20-100 GHz) for ultrafast data speeds.

Accommodating the lower frequency band, closer to the 4G spectral regions, is less problematic than the significant changes needed to fully realize 5G capability in the higher frequency ranges. For example, frequency type is tied to overall signal strength. The higher the frequency, the shorter the distance the wave can travel.

Ceramic materials have long been used in wireless communications network technologies for both mobile devices and base stations. Enhancing ceramics, therefore, has been a central focus in improving 5G capability. For their part, Hill’s research group has developed a ceramic to enhance a device that is critical for 5G applications, called a circulator.

Typically made of insulating ceramic materials based on yttrium iron garnet, circulators are three-port devices that serve as traffic circles to keep the signal flowing in one direction and enable a receiver and a transmitter to share the same antenna.

To significantly increase the energy density to accommodate the higher frequencies, the researchers have partially replaced yttrium with bismuth, a heavy element that increases the dielectric constant of the ceramic. The bismuth substitutions also enable the miniaturization of circulators.

As the 5G technology battle continues to heat up, circulators could be supplanted by high-power gallium nitride-based switches, which shows just how early the stage still is for 5G technology development.

“Millimeter-wave technology is likely to be the wild west for some time, as one technology may dominate only to be quickly supplanted by a different technology,” Hill said.

###

The article “Perspective on ceramic materials for 5G wireless communication systems” is authored by Michael David Hill, David Bowie Cruickshank, and Iain MacFarlane. The article will appear in Applied Physics Letters on March 23, 2021 (DOI: 10.1063/5.0036058). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0036058.

ABOUT THE JOURNAL

Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See https://aip.scitation.org/journal/apl.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0036058

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsInternetMaterialsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Combined Use of Cannabis and Tobacco May Impact Brain’s ‘Bliss Molecule,’ Study Reveals

October 21, 2025
Lignins – More Organized Than We Thought

Lignins – More Organized Than We Thought

October 21, 2025

Innovative MoOX/Ag/MoOX Sandwich Buffer Layer Developed for Four-Terminal CsPbI3/TOPCon Tandem Minimodules

October 21, 2025

Non-Haem Iron Enzymes Drive Azetidine Biosynthesis

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    303 shares
    Share 121 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    134 shares
    Share 54 Tweet 34
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NCOA7 Suppresses Renal Cancer via Autophagy, Lipids

China’s Sand, Gravel Demand Drops Amid Circular Shift

New Study Reveals AI Chatbots Frequently Breach Mental Health Ethics Guidelines

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.