• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Engineers tap DNA to create ‘lifelike’ machines

Bioengineer by Bioengineer
April 11, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. -Tapping into the unique nature of DNA, Cornell engineers have created simple machines constructed of biomaterials with properties of living things.

Using what they call DASH (DNA-based Assembly and Synthesis of Hierarchical) materials, engineers constructed a DNA material with capabilities of metabolism, in addition to self-assembly and organization – three key traits of life.

“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said Dan Luo, professor of biological and environmental engineering.

The paper published in Science Robotics.

For any living organism to maintain itself, there must be a system to manage change. New cells must be generated; old cells and waste must be swept away. Biosynthesis and biodegradation are key elements of self-sustainability and require metabolism to maintain its form and functions.

Through this system, DNA molecules are synthesized and assembled into patterns in a hierarchical way, resulting in something that can perpetuate a dynamic, autonomous process of growth and decay.

Using DASH, the Cornell engineers created a biomaterial that can autonomously emerge from its nanoscale building blocks and arrange itself – first into polymers and eventually mesoscale shapes. Starting from a 55-nucleotide base seed sequence, the DNA molecules were multiplied hundreds of thousands times, creating chains of repeating DNA a few millimeters in size. The reaction solution was then injected in a microfluidic device that provided a liquid flow of energy and the necessary building blocks for biosynthesis.

As the flow washed over the material, the DNA synthesized its own new strands, with the front end of the material growing and the tail end degrading in optimized balance. In this way, it made its own locomotion, creeping forward, against the flow, in a way similar to how slime molds move.

The locomotive ability allowed the researchers to pit sets of the material against one another in competitive races. Due to randomness in the environment, one body would eventually gain an advantage over the other, allowing one to cross a finish line first.

“The designs are still primitive, but they showed a new route to create dynamic machines from biomolecules. We are at a first step of building lifelike robots by artificial metabolism,” said Shogo Hamada, lecturer and research associate in the Luo lab, and lead and co-corresponding author of the paper. “Even from a simple design, we were able to create sophisticated behaviors like racing. Artificial metabolism could open a new frontier in robotics.”

###

The work was funded in part by the National Science Foundation and supported by the Cornell NanoScale Science and Technology Facility and Kavli Institute at Cornell for Nanoscale Science. Collaborators include Jenny Sabin, Professor in Architecture, and researchers form Shanghai Jiaotong University and the Chinese Academy of Sciences.

There is a patent pending with the Center for Technology Licensing.

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Media Contact
Jeff Tyson
[email protected]

Related Journal Article

http://news.cornell.edu/stories/2019/04/engineers-create-lifelike-material-artificial-metabolism
http://dx.doi.org/10.1126/scirobotics.aaw3512

Tags: Chemistry/Physics/Materials SciencesMaterialsTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genome Analysis Identifies Key Genes for Yak Size

New Simple Test Accurately Predicts Risk of Severe Liver Disease

Precision Molecule Mapping via Structured Illumination Detection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.