• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Engineers revolutionize molecular microscopy

Bioengineer by Bioengineer
July 11, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Single molecules measure electrical potentials

“All matter consists of positively charged atomic nuclei and negatively charged electrons,” explains Professor Dr.-Ing. Rolf Findeisen from the Institute of Automation Technology at the University of Magdeburg. “These generate electrical potentials. Using conventional methods, until now it has been barely possible to measure these very weak fields, which are responsible for many of the characteristics and functionalities of materials.”

With the newly developed Scanning Quantum Dot Microscopy, a single molecule, known as a quantum dot, is mounted on the tip of the needle of a scanning force microscope. This tip travels, like the needle of a record player, over the sample with the molecule at temperatures close to absolute zero and thus, step by step creates a coherent representation of the surface.

Together with his doctoral student, Michael Maiworm, Professor Rolf Findeisen developed a controller for the innovative microscope method – an algorithm that controls the scanning process. This makes the accurate, but until now extremely long-winded measurement of potentials at molecular resolution possible in just a few minutes. “With the new controller we can now easily scan the entire surface of a molecule, as with a normal scanning force microscope,” says Christian Wagner from the Jülich Research Center. This enables us to produce high-resolution images of the potential, which previously appeared unattainable.

“There are many possible uses for this new, unusually precise and fast microscopy technique,” continues Michael Maiworm, who largely developed the controller as part of his dissertation supervised by Professor Findeisen. “They range from fundamental physical questions to semiconductor electronics – where even a single atom can be critical for functionality – and molecular chemical reactors to the characterization of biomolecules such as our DNA or biological surfaces.”

The work is a part of the cooperation between Magdeburg and Jülich, which examines the targeted and automated manipulation of objects at nano level. In this connection the molecular tip has a dual function: it is simultaneously both a measuring probe and a tool. This opens up the possibility of, in future, being able to create nanostructures via 3D printing. It is conceivable, for example, that it might be possible to produce electrical circuits consisting of individual molecules or sensors of molecular dimension and resolution.

###

Original Publication:

Quantitative imaging of electric surface potentials with single-atom sensitivity

Christian Wagner, Matthew. F. B. Green, Michael Maiworm, Philipp Leinen, Taner Esat, Nicola Ferri, Niklas Friedrich, Rolf Findeisen, Alexandre Tkatchenko, Ruslan Temirov, F. Stefan Tautz Nature Materials (published online 10 June 2019), DOI: 10.1038/s41563-019-0382-8

Media Contact
Dr.-Ing. Rolf Findeisen
[email protected]
http://dx.doi.org/10.1038/s41563-019-0382-8

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    66 shares
    Share 26 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Senior Nursing Students Encounter End-of-Life Experiences

Kawasaki Disease Linked to Hepatitis and Torque Teno Virus

Developing Efficient Protocols for Respiratory Virus Biobank

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.