• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Engineers revolutionize molecular microscopy

Bioengineer by Bioengineer
July 11, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Single molecules measure electrical potentials

“All matter consists of positively charged atomic nuclei and negatively charged electrons,” explains Professor Dr.-Ing. Rolf Findeisen from the Institute of Automation Technology at the University of Magdeburg. “These generate electrical potentials. Using conventional methods, until now it has been barely possible to measure these very weak fields, which are responsible for many of the characteristics and functionalities of materials.”

With the newly developed Scanning Quantum Dot Microscopy, a single molecule, known as a quantum dot, is mounted on the tip of the needle of a scanning force microscope. This tip travels, like the needle of a record player, over the sample with the molecule at temperatures close to absolute zero and thus, step by step creates a coherent representation of the surface.

Together with his doctoral student, Michael Maiworm, Professor Rolf Findeisen developed a controller for the innovative microscope method – an algorithm that controls the scanning process. This makes the accurate, but until now extremely long-winded measurement of potentials at molecular resolution possible in just a few minutes. “With the new controller we can now easily scan the entire surface of a molecule, as with a normal scanning force microscope,” says Christian Wagner from the Jülich Research Center. This enables us to produce high-resolution images of the potential, which previously appeared unattainable.

“There are many possible uses for this new, unusually precise and fast microscopy technique,” continues Michael Maiworm, who largely developed the controller as part of his dissertation supervised by Professor Findeisen. “They range from fundamental physical questions to semiconductor electronics – where even a single atom can be critical for functionality – and molecular chemical reactors to the characterization of biomolecules such as our DNA or biological surfaces.”

The work is a part of the cooperation between Magdeburg and Jülich, which examines the targeted and automated manipulation of objects at nano level. In this connection the molecular tip has a dual function: it is simultaneously both a measuring probe and a tool. This opens up the possibility of, in future, being able to create nanostructures via 3D printing. It is conceivable, for example, that it might be possible to produce electrical circuits consisting of individual molecules or sensors of molecular dimension and resolution.

###

Original Publication:

Quantitative imaging of electric surface potentials with single-atom sensitivity

Christian Wagner, Matthew. F. B. Green, Michael Maiworm, Philipp Leinen, Taner Esat, Nicola Ferri, Niklas Friedrich, Rolf Findeisen, Alexandre Tkatchenko, Ruslan Temirov, F. Stefan Tautz Nature Materials (published online 10 June 2019), DOI: 10.1038/s41563-019-0382-8

Media Contact
Dr.-Ing. Rolf Findeisen
[email protected]
http://dx.doi.org/10.1038/s41563-019-0382-8

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Fluorine “Forever Chemical” in Medicines Does Not Increase Drug Reaction Risks

Fluorine “Forever Chemical” in Medicines Does Not Increase Drug Reaction Risks

September 2, 2025
Eliminating Yellow Stains on Fabric Using Blue Light: A Scientific Breakthrough

Eliminating Yellow Stains on Fabric Using Blue Light: A Scientific Breakthrough

September 2, 2025

Unraveling the Physics Behind Universal Unusual Magnetoresistance

September 2, 2025

Quantum researchers capture real-time magnetic flipping at the core of a single atom

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • Needlestick Injury Rates in Nurses and Students in Pakistan

    129 shares
    Share 52 Tweet 32
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Drug Targeting Mitochondria Strikes Cancer Cells from Within

Remifentanil and Neuromuscular Blockers in Pediatric Intubation

Nurse Activity Levels Linked to Work Demographics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.