• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, September 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Engineering of plant cell wall modifying enzymes opens new horizons

Bioengineer by Bioengineer
September 6, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A newly discovered way of optimising plant enzymes through bioengineering has increased knowledge of how plant material can be converted into biofuels, biochemicals and other high-value products.

Xyloglucan xyloglucosyl transferase

Credit: University of Adelaide

A newly discovered way of optimising plant enzymes through bioengineering has increased knowledge of how plant material can be converted into biofuels, biochemicals and other high-value products.

The University of Adelaide-led study presents innovative ideas for how the walls of plant cells can be assembled, structured and remodelled by controlling specific enzymes’ catalytic function.

Fundamental plant cell properties – such as structure, integrity, cytoskeletal organisation and stability – are now viewed differently, suggesting new alternatives.

Studying the catalytic function of specific enzymes – a process termed ‘xyloglucan xyloglucosyl transferases’ – allowed researchers to better understand how they link diverse polysaccharides to form structural components of plant cell walls.

“This work contributes to the essential knowledge of how xyloglucan xyloglucosyl transferases can be understood and their fundamental properties controlled – for example, to improve their catalytic rates and stability,” said project leader Professor Maria Hrmova.

For plant material to be used in the production of biofuels, plant cell walls need to be deconstructed and the resultant materials chemically processed. The properties of the cell walls can be altered to be less rigid, therefore making biofuel production more efficient and cost-effective.

The finding also has applications for the pharmaceutical industry, where enzymes are sought as environmentally friendly and cost-effective options in bioremediation, and other applications.

Bioremediation is the removal of contaminants, pollutants and toxins from the environment through the use of living organisms.

“Although the definition of the catalytic function of xyloglucan xyloglucosyl transferases has significantly progressed during the past 15 years, there are limitations, and still a lack of information, in how this knowledge can be organically implemented in the functionality of plant cell walls,” she said.

This teamwork builds upon 60 years of xyloglucan chemical and biochemical research of this and other research groups.

The research team used sensitive high-performance liquid chromatography with fluorescent reagents to monitor complex biochemical reactions of polysaccharides in an efficient way.

“We also applied 3D molecular modelling and molecular dynamics simulations to gain insights into the mode of action of these enzymes on fast time scales,” Professor Hrmova said.

“Our findings are supported by plant and cellular biology approaches we used to offer novel ideas on the function of these enzymes in vivo.”

The study was published in the prestigious Plant Journal and was conducted with an international, multidisciplinary team of researchers from the Institute of Chemistry of the Slovak Academy of Sciences and the Huaiyin Normal University in China.

It also received funding support from the VEGA Scientific Grant Agency and the Australian Research Council.

A visualisation of reactant movements in a plant xyloglucan transferase enzyme can be seen here.



Journal

The Plant Journal

DOI

10.1111/tpj.16435

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Engineering of substrate specificity in a plant cell-wall modifying enzyme through alterations of carboxyl-terminal amino acid residues

Article Publication Date

2-Sep-2023

COI Statement

The authors declare they do not have any conflicts of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

cell degradation

Scientists reveal intricate mechanisms cells use to build protein destruction signals

September 21, 2023
Land and water scarcity from hydrogen production

Predicting the sustainability of a future hydrogen economy

September 21, 2023

The dance of organ positioning: a tango of three proteins

September 21, 2023

Using harmless light to change azobenzene molecules with new supera molecular complex

September 21, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • University of South Florida scientist: Barnacles may help reveal location of lost Malaysia Airlines flight MH370

    46 shares
    Share 18 Tweet 12
  • Lithuanian invention at the forefront of solar technology breakthrough

    41 shares
    Share 16 Tweet 10
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists reveal intricate mechanisms cells use to build protein destruction signals

Predicting the sustainability of a future hydrogen economy

The dance of organ positioning: a tango of three proteins

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In