• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Empty spaces, how do they make a protein unstable?

Bioengineer by Bioengineer
October 15, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Partial unfolding of proteins may affect their stability and is a challenge in the industry. So how does a cavity destabilize a protein? Would such a cavity be empty? These are questions that researchers from Aarhus University answer in a new study

IMAGE

Credit: Proc Natl Acad Sci U S A, copyright 2019 National Academy of Sciences.

Proteins exist as groups of microscopic configurations, regulated by a landscape of free energy, in which there is a multitude of “excited” states that co-exists with the minimum energy structure. These alternatively folded and partially “disordered” states occur continuously due to protein dynamics and are key elements required to understand the function and stability of proteins.

Because these excited states exist only briefly and are lowly populated they are “invisible” to most experimental methods. However, recent developments in NMR spectroscopy allow for their detection and structural investigation at atomic resolution.

In this study, the researchers used a classic model system for protein folding, the L99A mutant of T4 lysozyme. This protein has a cavity in its hydrophobic core that is large enough to fit a benzene ring (a chemical compound consisting of a ring of 6 carbon atoms).

READ ALSO: New efficient method for urine analysis may tell us more

Pressure reveals invisible states

Mulder and his team used Nuclear Magnetic Resonance (NMR) spectroscopy coupled with hydrostatic pressure to monitor “invisible” excited states. High pressure favors compact states, and the protein unfolds or collapses at high pressure to remove cavities.

The researchers have succeeded in obtaining a unique picture of the hierarchy of unfolded states in the protein’s energy landscape by subjecting it to pressure. Furthermore, with these pressure perturbations, they have been able to identify empty protein cavities and determine the energetic consequences of filling these with water.

Partial unfolding of unstable parts of proteins is a major concern in the development of industrial enzymes and biological drugs, as well as a starting point for protein deposition diseases. The approach shown in this study here establishes a powerful way to rationally understand and gain control of protein stability at the atomic level.

READ ALSO: How good are protein disorder prediction programmes actually?

###

More information

The work is financially supported by the Japan Society for the Promotion of Science, Danish Ministry of Higher Education and Science and the Carlsberg Foundation.

The research was carried out by researchers from Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, and Department of Molecular Biology and Genetics
at Aarhus University (AU), in collaboration with researchers from Graduate School of Life Sciences and College of Pharmaceutical Sciences (Japan). Associate Professor Frans Mulder (iNANO and Department of Chemistry, AU) was in charge of the research team.

Read more about the results in Proceedings of the National Academy of Sciences:
Xue, M.; Wakamoto, T.; Kejlberg, C.; Yoshimura, Y.; Nielsen, T. A.; Risør, M. W.; Sanggaard, K. W.; Kitahara, R.; Mulder, F. A. A. How internal cavities destabilize a protein. Proc Natl Acad Sci U S A. 2019. DOI: 10.1073/pnas.1911181116.

Contact

Associate Professor Frans Mulder

Email: [email protected]

Tel: +4587155889

Media Contact
Frans Mulder
[email protected]

Original Source

http://inano.au.dk/about/news-events/news/show/artikel/empty-spaces-how-do-they-make-a-protein-unstable/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1911181116

Tags: BiochemistryChemistry/Physics/Materials SciencesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Drivers of Corporate Governance in Burundi’s Cooperatives

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.