• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Emerging device by the fusion of IGZO and ferroelectric-HfO2

Bioengineer by Bioengineer
June 18, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Next generation memory with low-power, high-speed, and high capacity

IMAGE

Credit: Masaharu Kobayashi

As a part of JST PRESTO program, Associate professor Masaharu Kobayashi, Institute of Industrial Science, the University of Tokyo, has developed a ferroelectric FET (FeFET) with ferroelectric-HfO2 and ultrathin IGZO channel. Nearly ideal subthreshold swing (SS) and mobility higher than poly-silicon channel have been demonstrated.

FeFET is a promising memory device because of its low-power, high-speed and high-capacity. After the discovery of CMOS-compatible ferroelectric-HfO2 material, FeFET has been attracting more attentions than ever before. For even higher memory capacity, 3D vertical stack structure has been proposed as shown in Fig. 1(a).

For 3D vertical stack structure, poly-silicon is typically used as a channel material. However, poly-silicon has very low mobility in nanometer thickness region due to grain boundaries and extrinsic defects. Moreover, poly-silicon forms a low-k interfacial layer with ferroelectric-HfO2 gate insulator. This results in voltage loss and charge trapping which prevents low voltage operation and degrades reliability, respectively as shown in Fig. 1(b).

To solve these problems, in this study, we proposed a ferroelectric-HfO2 based FeFET with ultrathin IGZO channel. IGZO is a metal-oxide semiconductor and can avoid low-k interfacial layer with ferroelectric HfO2 gate insulator. Moreover, since IGZO is N-type semiconductor and typically used in junctionless transistor operation, charge trapping, which seriously happens in inversion mode operation, can be avoided as shown in Fig. 1(b).

First, we systematically investigated optimum IGZO channel thickness. As IGZO thickness decreases, SS is reduced and threshold voltage (Vth) increases. To realize steep SS and normally-off operation, 8nm was chosen. Next, we fabricated TiN/HfZrO2/IGZO capacitor. HfZrO2 is the ferroelectric layer. Cross-sectional TEM image shows that each layer was uniformly formed as shown in Fig. 2(a). GIXRD spectrum was taken and ferroelectric phase was confirmed. By electrical characterization, we confirmed clear ferroelectric property with IGZO capping on HfZrO2 as shown in Fig. 2(b). It should be noted that, in the current device design, back-gate is needed with buried oxide to fix body potential. Without back-gate, body potential is floating and voltage cannot be sufficiently applied on ferroelectric-HfO2 gate insulator, which was confirmed by TCAD simulation. Based on these device design, we fabricated a FeFET with ferroelectric-HfO2 and ultrathin IGZO channel. Fig. 3(a) shows the measured drain-current versus gate-voltage after applying write and erase pulse voltages. 0.5V memory window and nearly ideal SS of 60mV/dec was obtained. In addition, field-effect mobility is about 10cm2/Vs as shown in Fig. 3(b), which can be higher than poly-silicon at the same thickness.

The achievements in this study will open a new path for realizing low-voltage and highly reliable FeFET with 3D vertical stack structure. This leads to enabling ultralow power IoT edge devices, deploying highly sophisticated network system, and thus providing more strategic social services utilizing big data.

###

This work was presented in VLSI Technology Symposium 2019 on June 11th in 2019, which was held in Kyoto, Japan.

Media Contact
Masaharu Kobayashi
[email protected]

Original Source

http://www.jst.go.jp/pr/announce/20190610/index_e.html

Tags: Electrical Engineering/ElectronicsResearch/DevelopmentSuperconductors/SemiconductorsTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Can Animals Be Fooled by Optical Illusions? Insights from Fish and Birds on Perception

October 20, 2025
McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    298 shares
    Share 119 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Tuberculosis Treatment: Immunotherapy Innovations Ahead

Almost 50% of Finns with Chronic Conditions Experience Medication Therapy as a Burden

Silent Hazard: Airborne Mercury from Gold Mining Contaminates African Food Crops, New Research Warns

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.