• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Embryonic gene regulation through mechanical forces

Bioengineer by Bioengineer
May 22, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Copyright: Ulrich Technau

During embryonic development genetic cascades control gene activity and cell differentiation. In a new publication of the journal PNAS, the team of Ulrich Technau of the Department of Molecular Evolution and Development at the University of Vienna reported that besides the genetic program, also mechanical cues can contribute to the regulation of gene expression during development. Comparisons with other animals suggests that this regulatory principle is ancient.

It is generally thought that embryonic development and cellular differentiation of animals and humans follows a precise genetic program of spatiotemporal gene expression. However, a number of recent studies suggested that mechanotransduction – the ability of cells to transform mechanical forces into biochemical signals – can also contribute to the regulation of gene expression and thus may play an important role in development. While most of these studies were done in cell culture, the team of Ulrich Technau from the University of Vienna now reports experiments with mechanosensitive gene expression during early development of the starlet sea anemone Nematostella vectensis.

The authors show in a recent publication in the Proceedings of the National Academy of Sciences USA that chemical inhibition of cellular myosin function not only blocks the morphogenetic movement of gastrulation – the process where inner and outer cell layers are formed by invagination – but also abolishes the expression of a crucial developmental regulator gene, brachyury. This gene has a crucial ancient role in the development of virtually all animals. Surprisingly, external mechanical pressure applied to such embryos can activate or restore the expression of brachyury. Furthermore, brachyury expression in Nematostella vectensis via mechanotransduction depends on β-catenin, a key protein with a conserved dual role in cell-cell adhesion and in gene regulation following a signaling cascade.

Based on their findings, the authors propose a feedback loop whereby mechanical and genetic regulation work together to ensure robust brachyury expression. In addition, because β-catenin-dependent mechanotransduction occurs in other animals like zebrafish and the fruitfly, the findings suggest that this form of gene regulation dates back to at least 600 million years ago, the evolutionary split between vertebrates, insects and sea anemones.

###

Publication in PNAS:

"b-catenin dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria": Ekaterina Pukhlyakova, Andy Aman, Kareem Elsayad, Ulrich Technau. Proceedings of the Academy of Sciences (PNAS), Article #17-13682
DOI: 10.1073/pnas.1713682115
http://www.pnas.org/cgi/doi/10.1073/pnas.1713682115

Media Contact

Ulrich Technau
[email protected]
43-142-775-7000
@univienna

http://www.univie.ac.at/en/

Original Source

http://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/embryonic-gene-regulation-through-mechanical-forces/ http://dx.doi.org/10.1073/pnas.1713682115

Share13Tweet8Share2ShareShareShare2

Related Posts

Impact of Nitrogen Stress on Tobacco Metabolism

Impact of Nitrogen Stress on Tobacco Metabolism

October 27, 2025
Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

October 27, 2025

Cloud Relay Boosts Blockchain Logging for IoT Fermentation

October 27, 2025

How Uptake of DNA Fragments from Dying Cells Could Transform Mammalian Evolution and Genomics

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multisystem Inflammatory Syndrome: SARS-CoV-2-Triggered Kawasaki Disease

Beyond Electronics: Utilizing Light to Accelerate Computing Technology

Probiotics Alleviate Ovarian Toxicity in Endotoxemic Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.