• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Electronic nose on a drone sniffs out wastewater treatment plant stink

Bioengineer by Bioengineer
November 16, 2021
in Biology
Reading Time: 4 mins read
0
An electronic nose on a drone collecting air for odor measurement
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Spain have engineered a portable electronic nose (e-nose) that’s almost as sharp as a human nose at sniffing out the stink of wastewater treatment plants. Coupled with a drone, the lightweight e-nose can measure the concentration of different smells, predict odor intensity, and produce a real-time odor map of the plant for management. The method appears November 16 in the journal iScience.

An electronic nose on a drone collecting air for odor measurement

Credit: Maria Deseada Esclapez

Researchers from Spain have engineered a portable electronic nose (e-nose) that’s almost as sharp as a human nose at sniffing out the stink of wastewater treatment plants. Coupled with a drone, the lightweight e-nose can measure the concentration of different smells, predict odor intensity, and produce a real-time odor map of the plant for management. The method appears November 16 in the journal iScience.

Conventionally, a wastewater plant’s odor is measured by dynamic olfactometry, where a human panel whiffs and analyzes bags of air collected from the plant. Although the method has been considered the gold standard, the process is costly, slow, and infrequent, which doesn’t allow operators to quickly respond to problems or pinpoint the root of the stench.

“I live two kilometers (1.2 miles) away from a wastewater treatment plant, and from time to time, you can’t even open the window because the smell is horrendous,” says senior author Santiago Marco of the Institute for Bioengineering of Catalonia. “We shouldn’t underestimate the impact to the quality of life for the people surrounding these facilities, and there are also physical and psychological consequences of being exposed to malodors.”

To better monitor wastewater plants’ odor emission, Marco and his team designed a portable e-nose for real-time surveillance and data visualization with the help of artificial intelligence (AI). The team collected bags of air from a plant and trained the e-nose to sniff out pungent chemicals such as hydrogen sulfide, ammonia, and sulfur dioxide, which smell like rotten eggs, urine, and burnt matches, respectively. The e-nose is also equipped with a sensor for carbon dioxide, an indicator of bacterial activity. In laboratory settings, the e-nose performed nearly as well as human noses.

The researchers then attached the 1.3-kilogram (2.9-pound) e-nose to a drone and sent it into the skies at a medium wastewater treatment plant in the south of Spain between January and June. Hovering over different facilities at the plant, the “sniffing drone” sucks in air via a ten-meter (33-foot) tube and analyzes the air in a sensor chamber.

“What’s tricky with odor measurement is that it’s a human perception, and it’s not well-defined,” says co-author Maria Deseada Esclapez of Depuración de Aguas del Mediterráneo, a sewage wastewater and sanitation service company. “We are not only trying to quantify particular or individual components of the emission, but also to predict the intensity of odors as perceived by humans.”

The results demonstrated that the e-nose on a drone was feasible for wastewater odor monitoring. When analyzing the same air samples in a field test, 10 out of 13 measurements from the e-nose aligned with the human panel’s assessments. Aided by the drone’s mobility and the AI algorithm, the team also mapped out the temporal and spatial odor concentration and, for the first time, predicted the intensity of the scent from drone measurements.

“We are extremely happy with the results, but we need more validation and to make the device more robust for a real plant operation,” Marco says. The team plans to shave off some extra weight from the e-nose and develop a standardized process for the method. They are also planning to further optimize the device against influence from temperature, humidity, and other environmental conditions that can affect the accuracy.

“The work may also have implications for other facilities like landfills, composting plants, or even large farms with cattle and pigs that are also known to produce all types of malodors,” Marco says.

“We are eager to see what impact this work would have on the industry,” adds Esclapez.

###

This work was supported by from the ATTRACT project funded by the EC, the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya, the Comissionat per a Universitats I Recerca del DIUE de la Generalitat de Catalunya, the European Social Fund (ESF), and the Institut de Bioenginyeria de Catalunya (IBEC)

iScience, Burgués et al.: “RHINOS: A lightweight portable electronic nose for real-time odour quantification in wastewater treatment plants” https://www.cell.com/iscience/fulltext/S2589-0042(21)01342-0 

iScience (@iScience_CP) is an open-access journal from Cell Press that provides a platform for original research and interdisciplinary thinking in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. Visit: http://www.cell.com/iscience. To receive Cell Press media alerts, contact [email protected].



Journal

iScience

DOI

10.1016/j.isci.2021.103371

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

RHINOS: A lightweight portable electronic nose for real-time odour quantification in wastewater treatment plants

Article Publication Date

16-Nov-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Groundbreaking Data Reveal Unseen Insights into Early Childhood Brain Development

September 24, 2025
UVB Radiation’s Impact on Catla Catla Spawn

UVB Radiation’s Impact on Catla Catla Spawn

September 24, 2025

Custom Phage Cocktail Targets Enterobacter cloacae Infections

September 24, 2025

Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

September 24, 2025

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    70 shares
    Share 28 Tweet 18
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Predictive Lab Tests for Cardiac Events Remain Rare but Are on the Rise

Predicting Infant Motor Outcomes via NSE and S100B

How Chronic Cellular Stress and Fatty Acids Fuel Cancer-Associated Gut Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.