• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electron accelerators reveal the radical secrets of antioxidants

Bioengineer by Bioengineer
March 19, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka University researcher proves the value of electron accelerators for creating free radicals and understanding their damaging effects on biological molecules

IMAGE

Credit: Osaka University

Osaka, Japan – In a groundbreaking series of experiments, an Osaka University researcher has demonstrated an exciting new method for understanding the power of antioxidants to protect us from harmful free radicals. Professor Kazuo Kobayashi has used linear electron accelerators, sometimes called “linacs,” to fling electrons at speeds not previously seen in biological research. When the electrons slammed into water molecules in the samples, highly reactive free radicals were produced. This work will be extremely valuable for understanding the body’s naturally occurring antioxidant molecules and proteins, such as ascorbic acid, also called vitamin C.

A free radical is a molecule with an unpaired electron, which makes it very eager to react. Some biological processes, including photosynthesis, harness energic free radicals to power vital chemical reactions. However, when a free radical gets loose, it can be extremely damaging to DNA and other important biomolecules. Rogue radicals can also be created by radiation, including from the sun’s UV light. To avert damage from free radicals, a circulating antioxidant molecule or protein in the body can absorb the extra electron. For many years, scientists could only guess at the exact pathway of this process, since the transfer of the electron from the free radical to the antioxidant occurs extremely fast, in times measured in trillionths of a second.

In the current research, to watch the charge transfer in action, electrons were accelerated by a linac in a process called pulse radiolysis. Since biological samples almost always contain water, the electrons could be counted on to slam into H2O molecules, leading to the rapid and reliable generation of free radicals inside the sample. Although the merits of this innovation are widely applicable, it took many years to gain acceptance in biological fields.

“Linacs are well-known in the field chemistry and physics,” Professor Kobayashi explains, “but less familiar to researchers from other fields. Some skeptics thought they are too complex and damaging to biomolecules to be useful. However, this research demonstrates how valuable linacs can be for understanding a wide range of biological processes.”

This method can not only elucidate many uncertain biological reaction mechanisms that include electron transfers, but also help develop new medications for preventing cell damage.

###

The work is published in Chemical Reviews as “Pulse Radiolysis Studies for Mechanism in Biochemical Redox Reactions” at DOI: https://doi.org/10.1021/acs.chemrev.8b00405.

Media Contact
Saori Obayashi
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acs.chemrev.8b00405

Tags: BiochemistryBiologyBiomechanics/BiophysicsMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in COâ‚‚ Reduction

November 25, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.