• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Efficient synthesis of indole derivatives, an important component of most drugs, allows the development of new drug candidates

Bioengineer by Bioengineer
May 1, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research group at Nagoya University in Japan has successfully developed an ultrafast and simple synthetic method for producing indole derivatives. Their findings are expected to make drug production more efficient and increase the range of potential indole-based pharmaceuticals to treat a variety of diseases. Their findings were published in Communications Chemistry. 

Indole Synthesis

Credit: Reiko Matsushita

A research group at Nagoya University in Japan has successfully developed an ultrafast and simple synthetic method for producing indole derivatives. Their findings are expected to make drug production more efficient and increase the range of potential indole-based pharmaceuticals to treat a variety of diseases. Their findings were published in Communications Chemistry. 

An indole is an organic compound consisting of a benzene ring and a pyrrole ring. Heteroatom alkylation at the carbon atom next the indole ring is particularly useful to create wide range of new indole derivatives and many anti-inflammatory, anticancer, and antimicrobial treatments contain them  

In the past, this heteroatom alkylation has proven difficult because indoles easily and rapidly undergo unwanted dimerization/multimerization, processes in which two or more molecules combine during the reaction to form unwanted larger molecules. These unwanted by-products limit the yield of the desired product.  

Since indoles are common to so many drugs, an efficient method of synthesizing them is essential. Now, a team consisting of Assistant Professor Hisashi Masui (he/him), graduate student Sena Kanda (she/her), and Professor Shinichiro Fuse (he/him) at the Graduate School of Pharmaceutical Sciences, Nagoya University, obtained the target indole-based product in high yield while limiting side reactions using a new microflow synthesis method.  

Their method consists of flowing a solution through a small channel with an inner diameter of about 1 mm. Because of its small size, the channel has a high surface-area-to-volume ratio, allowing the solution to be mixed in a few milliseconds. This allows for precise control of short reaction times and limits the time when unstable intermediates are present in the reaction process to only about 0.1 seconds. This is fast enough to prevent unwanted dimerization/multimerization.  

“Although it takes several seconds to mix solutions using a flask, the microflow synthesis method does it in less than a few milliseconds,” Fuse said. “Therefore, short reaction times of less than a second can be generated and more precisely controlled and the reaction temperature can be fully controlled. We created an activated indole compound in 20 ms to achieve a target product yield of 95%. When the same reaction was performed in a standard flask, the target product could not be obtained at all, and side reactions occurred during the mixing of the solutions.” 

“Since the developed method can be used to synthesize various indole derivatives, our study is useful for creating drug candidates and improving the efficiency of drug production,” said Fuse. “The reaction proceeds at an extremely high speed under mild room temperature conditions, and the reactants used are readily available and inexpensive, making it highly practical.”  

The group sees many potential industrial applications. Fuse emphasized that the flow synthesis method can be reproducibly scaled up by continuous pumping, making it an ideal choice for manufacturing facilities. “Indoles are one of the most abundant structures in pharmaceuticals,” he said. “We expect it to contribute to the creation of drug candidates and the efficiency of pharmaceutical production.” 



Journal

Communications Chemistry

DOI

10.1038/s42004-023-00837-1

Article Title

Verification of preparations of (1H-indol-3-yl)methyl electrophiles and development of their microflow rapid generation and substitution

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Chemically Tuning Quantum Spin–Electric Coupling in Magnets

Chemically Tuning Quantum Spin–Electric Coupling in Magnets

August 27, 2025

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Organ Preservation: Who Accesses the Data?

Prioritizing Student Mental Health: Key Insights from BMES

Revolutionizing Plant Biology: Advances in Genome Synthesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.