• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Efficient approach for tracking physical activity with wearable health…

Bioengineer.org by Bioengineer.org
January 20, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Edgar Lobaton

Researchers from North Carolina State University have developed an energy-efficient technique for accurately tracking a user's physical activity based on data from wearable devices.

One goal for wearable health technologies is to identify and track physical activity by the wearer. However, accomplishing this goal requires a trade-off between accuracy and the power needed for data analysis and storage, which is a challenge, given the limited power available for wearable devices.

"Tracking physical activity is important because it is a key component for placing other health data in context," says Edgar Lobaton, an assistant professor of electrical and computer engineering at NC State and senior author of a paper on the new work. "For example, a spike in heart rate is normal when exercising, but can be an indicator of health problems in other circumstances."

Devising technology for monitoring physical activity involves addressing two challenges. First, the program needs to know how much data to process when assessing activity. For example, looking at all of the data collected over a 10-second increment, or tau, takes twice as much computing power as evaluating all of the data over a five-second tau.

The second challenge is how to store that information. One solution to this is to lump similar activity profiles together under one heading. For example, certain data signatures may all be grouped together under "running," while others may be lumped together as "walking." The challenge here is to find a formula that allows the program to identify meaningful profiles (e.g., running, walking or sitting): if the formula is too general, the profiles are so broad as to be meaningless; and if the formula is too specific, you get so many activity profiles that it is difficult to store all of the relevant data.

To explore these challenges, the research team had graduate students come into a motion-capture lab and perform five different activities: golfing, biking, walking, waving and sitting.

The researchers then evaluated the resulting data using taus of zero seconds (i.e., one data point), two seconds, four seconds, and so on, all the way up to 40 seconds.

The researchers then experimented with different parameters for classifying activity data into specific profiles.

"Based on this specific set of experimental data, we found that we could accurately identify the five relevant activities using a tau of six seconds," Lobaton says. "This means we could identify activities and store related data efficiently.

"This is a proof-of-concept study, and we're in the process of determining how well this approach would work using more real-world data," Lobaton says. "However, we're optimistic that this approach will give us the best opportunity to track and record physical activity data in a practical way that provides meaningful information to users of wearable health monitoring devices."

The paper, "Hierarchical Activity Clustering Analysis for Robust Graphical Structure Recovery," will be presented at the 2016 IEEE Global Conference on Signal and Information Processing, being held Dec. 7-9 in Washington, D.C. Lead author of the paper is Namita Lokare, a Ph.D. student at NC State. The co-authors are Daniel Benavides and Sahil Juneja, of NC State.

The research was done with support from the National Science Foundation's Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST) under grant EEC-1160483. The goal of the ASSIST Center, which is based at NC State, is to make wearable technologies that are powered by a user's movement or body heat and can be used for long-term health monitoring.

###

Media Contact

Matt Shipman
[email protected]
919-515-6386
@NCStateNews

Homepage

Share12Tweet7Share2ShareShareShare1

Related Posts

Expert Consensus on Validating Internal Jugular Ultrasound Tool

January 9, 2026

Evaluating Acupuncture for Cancer Treatment Fatigue: A Review

January 9, 2026

New Framework Enhances Climate Health Vulnerability Analysis

January 9, 2026

Exploring Nursing Students’ Satisfaction in Clinical Practicum

January 9, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    144 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Expert Consensus on Validating Internal Jugular Ultrasound Tool

Evaluating Acupuncture for Cancer Treatment Fatigue: A Review

New Framework Enhances Climate Health Vulnerability Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.