• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, March 25, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

EEG reveals information essential to users

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Khalil Klouche

In a study conducted by the Helsinki Institute for Information Technology (HIIT) and the Centre of Excellence in Computational Inference (COIN), laboratory test subjects read the introductions of Wikipedia articles of their own choice. During the reading session, the test subjects' EEG was recorded, and the readings were then used to model which key words the subjects found interesting.

'The aim was to study if EEG can be used to identify the words relevant to a test subject, to predict a subject's search intentions and to use this information to recommend new relevant and interesting documents to the subject. There are millions of documents in the English Wikipedia, so the recommendation accuracy was studied against this vast but controllable corpus', says HIIT researcher Tuukka Ruotsalo.

Due to the noise in brain signals, machine learning was used for modelling, so that relevance and interest could be identified by learning the EEG responses. With the help of machine learning methods, it was possible to identify informative words, so they were also useful in the information retrieval application.

'Information overload is a part of everyday life, and it is impossible to react to all the information we see. And according to this study, we don't need to; EEG responses measured from brain signals can be used to predict a user's reactions and intent', tells HIIT researcher Manuel Eugster.

Based on the study, brain signals could be used to successfully predict other Wikipedia content that would interest the user.

'Applying the method in real information retrieval situations seems promising based on the research findings. Nowadays, we use a lot of our working time searching for information, and there is much room in making knowledge work more effective, but practical applications still need more work. The main goal of this study was to show that this kind of new thing was possible in the first place', tells Professor at the Department of Computer Science and Director of COIN Samuel Kaski.

'It is possible that, in the future, EEG sensors can be worn comfortably. This way, machines could assist humans by automatically observing, marking and gathering relevant information by monitoring EEG responses', adds Ruotsalo.

###

The study was carried out in cooperation by the Helsinki Institute for Information Technology (HIIT), which is jointly run by Aalto University and the University of Helsinki, and the Centre of Excellence in Computational Inference (COIN). The study has been funded by the EU, the Academy of Finland as a part of the COIN study on machine learning and advanced interfaces, and the Revolution of Knowledge Work project by Tekes.

Further information:

Researcher Tuukka Ruotsalo
Aalto University, University of Helsinki, HIIT
+358 50 566 1400
[email protected]

Professor Samuel Kaski
Aalto University
+358 50 305 8694
[email protected]

Video: https://www.youtube.com/watch?v=3XIJgiLJwbI
HIIT augmented research http://augmentedresearch.hiit.fi/
Tekes Re:Know https://www.reknow.fi/
EU:n MindSee project http://mindsee.eu/
Department of Computer Science http://cs.aalto.fi/en/
HIIT http://www.hiit.fi/
The Centre of Excellence in Computational Inference (COIN) http://research.cs.aalto.fi/coin/

Media Contact

Samuel Kaski
[email protected]
358-503-058-694
@aaltouniversity

http://www.aalto.fi/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Picture1.png

Is early rhythm control in atrial fibrillation care cost-effective?

March 25, 2023
Transitions of low and high-entropy metal tellurides.

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

March 25, 2023

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

March 24, 2023

New type of entanglement lets scientists ‘see’ inside nuclei

March 24, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    65 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Is early rhythm control in atrial fibrillation care cost-effective?

“Glassiness” and “blurriness” might explain the behavior of high-entropy superconductors

Illinois Tech Assistant Professor Ren Wang receives prestigious National Science Foundation Award

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In