• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Economical eco-friendly fabrication of high efficiency chalcopyrite solar cells

Bioengineer by Bioengineer
December 8, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Clean, sustainable energy solutions are essential to meet the ever-increasing energy demands of the human population. High efficiency solar cells are promising candidates to reduce carbon emissions and achieve carbon neutrality. In this regard, solution-processed copper indium gallium sulfur diselenide solar cells (CIGSSe) solar cells have generated significant interest owing to their excellent photovoltaic properties, such as high absorption of visible light, stability, and tunable bandgap. However, large scale, practical applications are limited by a two-fold challenge. Firstly, solution-based CIGSSe fabrication yields very low power conversion efficiency and often uses solvents that are not environment-friendly. Secondly, to achieve higher power conversion efficiency, fabrication methods rely on expensive vacuum environment that leads to substantial material loss. To this end, a team of researchers led by Professor JunHo Kim from Global Energy Research Center for Carbon Neutrality, Incheon National University, Korea have developed a low-cost and eco-friendly fabrication method of high efficiency CIGSSe solar cells.

Economical Eco-friendly Fabrication of High Efficiency Chalcopyrite Solar Cells

Credit: JunHo Kim, Incheon National University

Clean, sustainable energy solutions are essential to meet the ever-increasing energy demands of the human population. High efficiency solar cells are promising candidates to reduce carbon emissions and achieve carbon neutrality. In this regard, solution-processed copper indium gallium sulfur diselenide solar cells (CIGSSe) solar cells have generated significant interest owing to their excellent photovoltaic properties, such as high absorption of visible light, stability, and tunable bandgap. However, large scale, practical applications are limited by a two-fold challenge. Firstly, solution-based CIGSSe fabrication yields very low power conversion efficiency and often uses solvents that are not environment-friendly. Secondly, to achieve higher power conversion efficiency, fabrication methods rely on expensive vacuum environment that leads to substantial material loss. To this end, a team of researchers led by Professor JunHo Kim from Global Energy Research Center for Carbon Neutrality, Incheon National University, Korea have developed a low-cost and eco-friendly fabrication method of high efficiency CIGSSe solar cells.

 

In a study made available online on 4 September 2022 and subsequently published in volume 32 Issue 46 of Advanced Functional Materials on 10 November 2022, the researchers used aqueous spray deposition in an air environment and developed a CIGSSe solar cell with power conversion efficiency (PCE) larger than 17 %. “For spray solution, we used deionized water, which is eco-friendly and cheapest solvent till date,” explains Prof. Kim. Moreover, conventional solution-based fabrication processes rely on environmentally hazardous, cadmium-based buffers for the optimization of thin-film solar cells. In this novel technique, the researchers used indium sulfide-based buffer that is a cadmium free, eco-friendly alternative.

 

The researchers further investigated the alloying effects of zirconium on indium sulfide buffers. Remarkably, the team found that zirconium alloying increases the electron concentration in the buffer. Moreover, this method “passivates” or reduces defect states in the CIGSSe absorber, optimizing the charge transfer between various interfaces, leading to enhanced PCE. Further, the researchers achieved even more defect passivation and higher PCE, of more than 17%, by alloying the CIGSSe absorber with potassium. The fabricated cell has an optimum bandgap for high efficiency applications such as a bottom cell or a tandem cell.

 

This novel technique is cost-effective and easily scalable as it does not require a vacuum environment. As Prof. Kim observes, “We carried out spray deposition in an air environment without using any high vacuum facility, which significantly reduces fabrication cost and thus makes the fabrication technique more practical and competitive in the industry sector.”

 

This development simultaneously improves the performance and fabrication of CIGSSe solar cells. This will revolutionize the application of these cells in integrated photovoltaic devices and vehicle integrated photovoltaic devices, and as energy sources for internet of things devices. 

 

***

Reference

DOI: https://doi.org/10.1002/adfm.202206561

Authors: Md Salahuddin Mina1, SeongYeon Kim2, Temujin Enkhbat 1, Enkhjargal Enkhbayar 1, and JunHo Kim1,3

Affiliations:

1Nano Photoelectronic Device Lab, Department of Physics, Incheon National University 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea

2Research Center for Thin Film Solar Cells, Daegu-Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988, Republic of Korea

3Global Energy Research Center for Carbon Neutrality, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea

 

About Incheon National University

Incheon National University (INU) is a comprehensive, student-focused university. It was founded in 1979 and given university status in 1988. One of the largest universities in South Korea, it houses nearly 14,000 students and 500 faculty members. In 2010, INU merged with Incheon City College to expand capacity and open more curricula. With its commitment to academic excellence and an unrelenting devotion to innovative research, INU offers its students real-world internship experiences. INU not only focuses on studying and learning but also strives to provide a supportive environment for students to follow their passion, grow, and, as their slogan says, be INspired.

Website: http://www.inu.ac.kr/mbshome/mbs/inuengl/index.html

About the author

Dr. JunHo Kim, the corresponding author of the study, is a Professor of Physics at Korea’s Incheon National University. His research group is developing high-efficiency thin-film solar cells with eco-friendly materials such as chalcopyrite, kesterite, and perovskite. He completed his PhD in Physics in 1998 at the Korea Advanced Institute of Science and Technology. Before coming to Incheon National University, he worked as a post-doctoral researcher at University of California, San Diego (1998-2000) and a research staff at the Electronics and Telecommunications Research Institute of South Korea (2000-2004).



Journal

Advanced Functional Materials

DOI

10.1002/adfm.202206561

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High Efficiency Aqueous Solution Sprayed CIGSSe Solar Cells: Effects of Zr4+-Alloyed In2S3 Buffer and K-Alloyed CIGSSe Absorber

Article Publication Date

10-Nov-2022

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Jeffrey Rimer, University of Houston Abraham E. Dukler Professor of Chemical Engineering

During dolphin research, UH engineer discovers new method to possibly improve pharmaceuticals

February 3, 2023
Dr Egle Klumbyte

Researchers: Energy-efficient construction materials work better in colder climates

February 3, 2023

The power of theory: Finding an efficient electrocatalyst for hydrogen peroxide synthesis

February 3, 2023

Robots and A.I. team up to discover highly selective catalysts

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

New treatment approach for prostate cancer could stop resistance in its tracks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In