• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Eclectic rocks influence earthquake types

Bioengineer by Bioengineer
March 25, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: IODP JRSO


New Zealand’s largest fault is a jumble of mixed-up rocks of all shapes, sizes, compositions and origins. According to research from a global team of scientists, this motley mixture could help explain why the fault generates slow-motion earthquakes known as “slow slip events” as well as destructive, tsunami-generating tremors.

“One thing that really surprised us was the sheer diversity of rock types,” said Laura Wallace, a research scientist at the University of Texas Institute for Geophysics (UTIG) and co-chief scientist on the expedition that retrieved rock samples from the fault. “These rocks that are being mashed up together all behave very differently in terms of their earthquake generating potential.”

The finding was described in a paper published March 25, 2020, in Science Advances. It is the latest discovery to emerge from two scientific drilling expeditions in New Zealand led by scientists at The University of Texas at Austin and colleagues at institutions in New Zealand.

Subduction zones–places where one tectonic plate dives beneath another–are where the world’s largest and most damaging earthquakes occur. Scientists have long debated why quakes are more powerful or more frequent at some subduction zones than at others, and whether there may be a connection with the slow slip events, which can take weeks or months to unfold. Although they are not felt by people on the surface, the energy they release into the Earth is comparable to powerful earthquakes.

“It has become apparent only in the last few years that slow slip events happen at many different types of faults, and some at depths in the Earth much shallower than previously thought,” said the paper’s lead author, Philip Barnes of the New Zealand Institute for Water and Atmospheric Research (NIWA). “It’s raised a lot of big questions about why they happen, and how they affect other kinds of earthquakes.”

To answer these questions, Barnes, Wallace, and UTIG Director Demian Saffer led two scientific ocean drilling expeditions to a region off the coast of New Zealand, where they drilled into and recovered rocks from the vicinity of the tremors’ source. UTIG is a research unit of the UT Jackson School of Geosciences.

“The earthquake and geological science community has speculated about what goes into a subduction zone where slow earthquakes occur,” said Saffer, who was co-chief scientist on the second expedition. “But this was the first time we’ve literally held those rocks–and physical evidence for any of those ideas–in our hands.”

The team drilled into the remains of a buried, ancient sea mountain where they found pieces of volcanic rock, hard, chalky, carbonate rocks, clay-like mudrocks, and layers of sediments eroded from the mountain’s surface.

Kelin Wang, an expert in earthquake physics and slow slip events at the Geological Survey of Canada, said that the paper was effectively a breakthrough in understanding how the same fault can generate different types of earthquakes.

“In addition to helping us understand the geology of slow slip events this paper also helps explain how the same fault can exhibit complex slip behavior, including tsunami-generating earthquakes,” said Wang, who was not part of the study.

Efforts to understand the connection between slow slip events and more destructive earthquakes are already underway. These studies, which are being led by other UTIG researchers, include detailed seismic imaging–which is similar to a geological CAT scan–of the slow slip zone in New Zealand, and an ongoing effort to track the behavior of subduction zones around the world by installing sensors on and beneath the seafloor. The goal of the work is to develop a better understanding of the events that lead up to a slow slip event versus a tsunami-generating earthquake.

“The next needed steps are to continue installing offshore instruments at subduction zones in New Zealand and elsewhere so we can closely monitor these large offshore faults, ultimately helping communities to be better prepared for future earthquakes and tsunami,” said Wallace, who also works at GNS Science, New Zealand’s government-funded geosciences research institute.

###

The research was supported by the International Ocean Discovery Program which is sponsored by the National Science Foundation and other participating countries. Support for the research also came from New Zealand’s Ministry for Business, Innovation, and Employment, NIWA and GNS Science.

Media Contact
Constantino Panagopulos
[email protected]
512-574-7376

Original Source

https://ig.utexas.edu/2020/03/25/eclectic-rocks-influence-earthquake-types/

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aay3314

Tags: Earth ScienceGeology/SoilGeophysics/GravityPlate Tectonics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025
Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Why Sandboxes Matter in Implantable Neurotechnology

Patent Ductus Arteriosus: Impact on Newborn Kidney Health

Legal vs Illegal Cannabis Sources in Germany Explained

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.