• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, January 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Echo from the past makes rice paddies a good home for wetland plants

Bioengineer by Bioengineer
October 17, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Geography before human land use impacts how well plant species are retained

IMAGE

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University studied the biodiversity of wetland plants over time in rice paddies in the Tone River basin, Japan. They found that paddies which were more likely to have been wetland before agricultural use retained more wetland plant species. On the other hand, land consolidation and agricultural abandonment were both found to negatively impact biodiversity. Their findings may one day inform conservation efforts and promote sustainable agriculture.

The Asian monsoon region is home to a vast number of rice paddies. Not only have they fed its billions of inhabitants for centuries, they are also an important part of the ecosystem, home to a vast array of wetland plant species. But as the population grows and more agricultural land is required, their sheer scale and complexity beg an important question: what is their environmental impact?

A team from Tokyo Metropolitan University led by Associate Professor Takeshi Osawa and their collaborators have been studying how rice paddies affect local plant life. In their most recent work, they investigated the biodiversity of wetland plants in rice paddies around the Tone River basin Japan. The Tone River is Japan’s second longest river, and runs through the 170,000 square kilometer expanse of the Kanto plains. Previous studies have looked at how a particular species or group of species fare in different conditions. Instead, the team turned their attention to the range of species that make up the plant community, with a particular focus on the number of wetland and non-wetland species present. Changes were tracked over time using extensive survey data from 2002, 2007 and 2012.

They found that not all rice paddies are equal when it comes to how well they support original wetland species. In fact, there was a correlation between how likely it was that the land was wetland before it was put to agricultural use, and the number of wetland species which were retained over time. Here, the team measured this using flow accumulation values (FAVs) for different plots of land, a simple metric which showed how easily water could accumulate. Importantly, this kind of approach might help us predict how amenable new rice paddies might be to the local wetland flora by calculating a simple number using the local terrain. However, they also found that things like land consolidation and agricultural abandonment could also have a negative impact. The emerging story is that both current human usage and original geographical conditions play an important role in deciding how ‘friendly’ rice paddies could be for the original wetland ecosystem.

The team believe that the same approach could be applied to different locations such as plantation forests which were (or were not) originally woodland. After all, many nations are turning to large scale tree planting to offset carbon emissions. The ability to systematically ‘assign’ how new land usage might impact local ecosystems is sure to greatly help restoration and conversation efforts.

###

This work was supported by the Environment Research and Technology Development Fund (4-1805, 4-1705) of the Ministry of the Environment, Japan, the Research Institute for Humanity and Nature (RIHN: a constituent member of NIHU) Core Project No. 14200075, and JSPS KAKENHI Grant Number 20K06096.

Media Contact
Go Totsukawa
[email protected]

Original Source

https://www.nature.com/articles/s41598-020-71958-z

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-71958-z

Tags: AgricultureBiodiversityBiologyEcology/EnvironmentNaturePlant SciencesPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Listening to the call of the wild: Tracking deer movements using sound

January 28, 2021
IMAGE

Senquan Liu named STEM CELLS Young Investigator of 2020

January 28, 2021

Discovery of early plasma biomarkers for Alzheimer’s disease

January 28, 2021

635 million-year-old fungi-like microfossil that bailed us out of an ice age discovered

January 28, 2021
Next Post
IMAGE

Molecular design strategy reveals near infrared-absorbing hydrocarbon

IMAGE

Oncotarget: Induction of phenotypic changes in HER2-postive breast cancer cells

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    69 shares
    Share 28 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

cancerGeneticsChemistry/Physics/Materials SciencesMedicine/HealthBiologyMaterialsEcology/EnvironmentTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthClimate ChangeCell Biology

Recent Posts

  • Three mental health conditions contribute to violent offenses, WCU study finds
  • Micro-brewing goes more micro
  • Listening to the call of the wild: Tracking deer movements using sound
  • High schoolers discover four exoplanets through Harvard and Smithsonian mentorship program
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In