• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

E. coli bacteria offer path to improving photosynthesis

Bioengineer by Bioengineer
September 21, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Cornell University

ITHACA, N.Y. – Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

The method is described in a paper, “Small subunits can determine enzyme kinetics of tobacco Rubisco expressed in Escherichia coli,” published in the journal Nature Plants.

Scientists have known that crop yields would increase if they could accelerate the photosynthesis process, where plants convert carbon dioxide (CO2), water and light into oxygen and eventually into sucrose, a sugar used for energy and for building new plant tissue.

Researchers have focused on Rubisco, a slow enzyme that pulls (or fixes) carbon from carbon dioxide to create sucrose. Along with CO2, Rubisco sometimes catalyzes a reaction with oxygen from the air, and when it does, it creates a toxic byproduct and wastes energy, thereby making photosynthesis inefficient.

“You would like Rubisco to not interact with oxygen and to also work faster,” said Maureen Hanson, professor of plant molecular biology at Cornell.

In an effort to achieve that, the researchers took Rubisco from tobacco plants and engineered it into E. coli. Tobacco serves as a common model plant in research. “We can now make mutations to try to improve the enzyme and then test it in E. coli,” Hanson said.

The advantage is that since bacteria reproduce so rapidly, researchers may test an altered Rubisco in E. coli and get results the next day. “If you introduce a new Rubisco into a plant, you have to wait a few months” to get results, she said.

Initial work by another group that engineered tobacco Rubisco into E. coli led to very weak expression of the enzyme. In plants, Rubisco is composed of eight large and eight small subunits. A single gene encodes each large subunit, but many genes encode each small subunit. The complex process of enzyme assembly and the presence of multiple versions of the enzyme in plants has made it very hard to experiment with Rubisco.

Led by Myat Lin, a postdoctoral research associate in Hanson’s lab and the paper’s first author, the researchers were able to break down the process and express a single type of large subunit and a single type of small subunit together in E. coli, to understand the enzyme’s properties. By doing this, they attained expression of the enzyme in E. coli that matched what was found in plants.

They also discovered that a Rubisco subunit found in trichomes (tiny hairs on plant leaves) worked faster than any of the subunits found in leaf cells.

“We now have the ability to engineer new versions of plant Rubisco in E. coli and find out whether the properties of an enzyme are better,” Hanson said. “Then, we can take the enzyme that’s improved and put that into a crop plant.”

###

Co-authors included undergraduate researcher William Stone and Vishalsingh Chaudhari, a postdoctoral associate, both from Hanson’s lab.

The study was funded by the U.S. Department of Energy and the National Science Foundation.

Media Contact
Lindsey Hadlock
[email protected]

Original Source

https://news.cornell.edu/stories/2020/09/e-coli-bacteria-offer-path-improving-photosynthesis

Related Journal Article

http://dx.doi.org/10.1038/s41477-020-00761-5

Tags: AgricultureBiologyBiotechnologyMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Potato Peels: A Green Solution for Water Purification

September 30, 2025
blank

Exploring Machine Learning in Hydrology: A Bibliometric Review

September 30, 2025

Vaccination Timing and Coverage Shape Measles Elimination

September 30, 2025

Future Neonatology: Boosting Interprofessional Collaboration Urged

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    59 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Potato Peels: A Green Solution for Water Purification

Exploring Machine Learning in Hydrology: A Bibliometric Review

Vaccination Timing and Coverage Shape Measles Elimination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.