• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Dust affects tooth wear and chewing efficiency in chimpanzees

Bioengineer by Bioengineer
March 6, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Increased dust loads result in decreased chewing efficiency in chimpanzees

IMAGE

Credit: © Ellen Schulz-Kornas, Roman Wittig

In their study, the researchers collected feces from chimpanzees living at Taï National Park, Ivory Coast, and analyzed chewing efficiency during dry and rainy periods. They found that increased dust loads during dry periods result in decreased chewing efficiency. Moreover, it was tested how dust affects tooth wear (surface texture) of the chimpanzees. The researchers found that consumption of dust covered foods created micrometer-scale surface texture features (e.g. fine furrows and dales) on cheek teeth while at the same time chewing was less intensive resulting in a lower amount of chews per food ingested and subsequently in larger mean fecal particle sizes.

What is more, the Leipzig researchers found evidence that abrasive loads from regionally (the West African subcontinent) acting periodical dust winds represent an ecological constraint on a local environment. The chimpanzees from the Taï forest are therefore one of the rarely described examples in African terrestrial environments where dust loads can be quantified and directly related to tooth wear.

In addition, the researchers explored the relationship between tooth wear and dietary composition using the long-term observation database on chimpanzee behavior of the Taï chimpanzee project and compiled observational data for feeding durations for the years 1993-2009. It was found that adult chimpanzees fed on 48 different plants and seven animal sources, most time on fruits and seeds, nuts, and leaves; and to a minor part on insects, plant pith and mammals. During the dry period chimpanzees increase feeding time on seeds and nuts, but reduce feeding on insects. Compared to males, females spent more time feeding on fruits, seeds, leaves, insects, and pith, but less on nuts, seeds and mammals.

“Understanding intraspecific feeding ecology and tooth wear patterns in chimpanzees is also a crucial first step for reconstructing the paleoecology of extinct hominins”, said Ellen Schulz-Kornas, who led the study at the former Max Planck Weizmann Center for Integrative Archaeology and Anthropology at the MPI-EVA in Leipzig. “When considering the findings of the present study it is conceivable that dust may have also triggered a decreased chewing efficiency, leading to dietary-physiological stress on the digestive system of fossil species”, Schulz-Kornas pointed out. “This may be especially important in seasonally fluctuating environments with an increased bias towards dry climate phases like for example in the South African early hominin record between 3.2 and 1.3 Million years ago”, concluded Schulz-Kornas.

###

Involved in the study were scientists from the former Max Planck Weizmann Center for Integrative Archaeology and Anthropology at the MPI-EVA in Leipzig, the Department of Primatology at the MPI-EVA, the Taï Chimpanzee Project at the Centre Suisse de Recherches Scientifique Abidjan and the University of Zurich’s Clinic for Zoo Animals, Exotic Pets, and Wildlife.

Original publication:

Ellen Schulz-Kornas, Julia Stuhltraeger, Marcus Clauss, Roman M. Wittig, Kornelius Kupczik

Dust affects chewing efficiency and tooth wear in forest dwelling Western chimpanzees (Pan troglodytes verus)

American Journal of Physical Anthropology, 01 March 2019

Media Contact
Dr. Ellen Schulz-Kornas
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/ajpa.23808

Tags: BiodiversityBiologyDentistry/Periodontal DiseaseEcology/EnvironmentEnvironmental HealthEvolutionFood/Food ScienceNutrition/NutrientsWeather/Storms
Share13Tweet8Share2ShareShareShare2

Related Posts

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

Extended Spectrum Beta-Lactamase in Ouagadougou Uropathogens

January 10, 2026
Unlocking Genetic Diversity in Xizang Sophora Moorcroftiana

Unlocking Genetic Diversity in Xizang Sophora Moorcroftiana

January 10, 2026

Diverse DNA Variants Linked to Deafness in Ecuador

January 10, 2026

Boosting European Chestnut Resilience Against Phytophthora Cinnamomi

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wearable NIR OLEDs Enable Non-Invasive Hair Treatment

Hydrocortisone Safe for Preterm Infants’ Heart Health

FDX1-Driven Cuproptosis Worsens Cholestatic Liver Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.