• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Duplicate or mirror?

Bioengineer by Bioengineer
March 14, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Laser light determines chirality of molecules

“In pharmaceutics, being able to transition a molecule from one chirality to the other using light instead of wet chemistry would be a dream,” says Professor Reinhard Dörner from the Institute of Atomic Physics at Goethe University. His doctoral student Kilian Fehre has now brought this dream one step closer to coming true. His observation: the formation of the right- or left-handed version depends on the direction from which laser light hits the initiator.

For his experiment, Kilian Fehre used the planar formic acid molecule. He activated it with an intense, circularly polarized laser pulse to transition it to a chiral form. At the same time, the radiation caused the molecule to break into its atomic components. It was necessary to destroy the molecule for the experiment so that it could be determined whether a duplicate or mirror version was created.

Fehre used the “reaction microscope” (COLTRIMS method) that was developed at the Institute for Atomic Physics for the analysis. It allows the investigation of individual molecules in a molecular beam. After the molecule’s explosive breakdown, the data provided by the detector can be used to precisely calculate the direction and speed of the fragments’ paths. This makes it possible to reconstruct the molecule’s spatial structure.

In order to create chiral molecules with the desired chirality in the future, it has to be ensured that the molecules are oriented the same way with regard to the circularly polarized laser pulse. This could be achieved by orienting them beforehand using a long-wave laser light.

This discovery could also play a critical role in generating larger quantities of molecules with uniform chirality. However, the researchers believe that in such cases, liquids would probably be radiated rather than gases. “There is a lot of work to be done before we get that far,” Kilian Fehre believes.

The detection and manipulation of chiral molecules using light is the focus of a priority programme which goes by the memorable name “ELCH” and which has been funded by the German Research Council since 2018. Scientists from Kassel, Marburg, Hamburg and Frankfurt have joined forces in this programme. “The long-term funding and the close collaboration with the priority programme provide us with the necessary resources to learn to control chirality in a large class of molecules in the future,” concludes Markus Schöffler, one of the Frankfurt project managers of the priority programme.

###

Publication: K. Fehre, S. Eckart, M. Kunitski, M. Pitzer, S. Zeller, C. Janke, D. Trabert, J. Rist, M. Weller, A. Hartung, L. Ph. H. Schmidt, T. Jahnke, R. Berger, R. Dörner und M. S. Schöffler: Enantioselective fragmentation of an achiral molecule in a strong laser field, in: Science Advances, doi: 10.1126/sciadv.aau7923

An image can be downloaded here: http://www.uni-frankfurt.de/76731281

Caption: The formic acid model is in the centre. The color code of the surrounding sphere shows the direct chirality of the formic acid for every direction from which the laser comes. If the laser is directed from the right side (right arrow), it results in right-handed formic acid; if from the left, in left-handed formic acid. Both chiral formic acids reflect the common structure of the molecule.

Further information: Kilian Fehre, Tel: +49 69 798-47004, [email protected]; Prof. Reinhard Dörner, Tel: +49 69 798-47003, [email protected]; Dr. Markus Schöffler, Tel: +49 69 798-47022, [email protected]. Institute for Atomic Physics, Faculty of Physics, Riedberg Campus.

Current news about science, teaching, and society can be found on GOETHE-UNI online (http://www.aktuelles.uni-frankfurt.de)

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a “foundation university”. Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: http://www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Anne Hardy, Science Editor, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-13035, Fax: (069) 798-763 12531, [email protected].

Media Contact
Kilian Fehre
[email protected]

Related Journal Article

https://aktuelles.uni-frankfurt.de/englisch/physics-laser-light-determines-chirality-of-molecules/
http://dx.doi.org/10.1126/sciadv.aau7923

Tags: BiochemistryBiologyChemistry/Physics/Materials SciencesMedicine/HealthMolecular BiologyMolecular PhysicsPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Ongoing Use of Nasogastric Tubes Following Esophageal Cancer Surgery Receives Backing

Ongoing Use of Nasogastric Tubes Following Esophageal Cancer Surgery Receives Backing

July 31, 2025
RIPK1 S213E Mutation Blocks Cell Death Interactions

RIPK1 S213E Mutation Blocks Cell Death Interactions

July 31, 2025

Biomarker Panels Boost Atrial Fibrillation Risk Insights

July 31, 2025

Brain Imaging Could Predict Which Patients Will Benefit Most from Anxiety Care Apps

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proteogenomic Study of Healthy vs. Cancerous Prostate Tissues Leveraging SILAC and Mutation Databases

Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

Lightning strikes kill 320 million trees annually, causing significant biomass loss

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.