• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Dundee lab solves HOIL-1 mystery

Bioengineer by Bioengineer
June 17, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The mysterious function of a key protein has been revealed following a breakthrough by University of Dundee scientists

The mysterious function of a key protein has been revealed following a breakthrough by University of Dundee scientists.

HOIL-1 is a component of the Linear Ubiquitin Assembly Complex (LUBAC) which lies at the heart of the mechanism that determines whether the cells of our body will survive or die. Now researchers working in the laboratory of Professor Sir Philip Cohen in the University’s Medical Research Council Protein Phosphorylation Unit (MRC-PPU) have found that HOIL-1 operates in tandem with a second component of LUBAC to form ubiquitin chains.

The research, which has just been published in the journal Proceedings of the National Academy of Sciences (PNAS), has also revealed that the ubiquitin chains are joined to other proteins by an unusual mechanism.

Sir Philip said, “It’s been known since its discovery that HOIL-1 looks like an E3 Ligase, but nobody knew what it actually did in cells. Now we know.

“One thing it does is to start new ubiquitin chains. HOIL-1 puts the first ubiquitin on, while a second component of LUBAC, called HOIP, attaches additional ubiquitins to form a ubiquitin chain.

“Remarkably, it turns out that HOIL-1 joins ubiquitin to proteins by forming ester bonds. It is only the second time that this type of ubiquitin linkage has been detected, the first example being discovered here in Dundee only last year by Dr Satpal Virdee. It is incredible that two people working next to each other have come across the first two examples of this type of protein connection.”

Since its discovery in Japan around 13 years ago, LUBAC has turned out to be a regulator of the body’s defence system that allows it to combat infection by microbes, such as bacteria and viruses. A key role of LUBAC is to suppress two forms of cell death called apoptosis and necroptosis, thereby ensuring cell survival.

Sir Philip says that although his lab’s new findings represent a significant breakthrough, more research is needed before it becomes clear whether new drugs can be developed to treat diseases by modulating the activity of LUBAC.

###

Media Contact
Jonathan Watson
[email protected]

Tags: BiochemistryBiologyCell BiologyChemistry/Physics/Materials SciencesMolecular BiologyMolecular PhysicsPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025
Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graphene Oxide Boosts Perovskite Solar Cell Efficiency

Empowering Self-Advocacy in Young Adults with Disabilities

Micron-Scale Fiber Mapping Without Sample Prep

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.