• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

DUAL takes AI to the next level

Bioengineer by Bioengineer
December 31, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A brain-inspired computing architecture speeds up complex data processing by running its algorithms inside its memory, significantly saving time and energy.

IMAGE

Credit: dgist

“Today’s computer applications generate a large amount of data that needs to be processed by machine learning algorithms,” says Yeseong Kim of Daegu Gyeongbuk Institute of Science and Technology (DGIST), who led the effort.

Powerful ‘unsupervised’ machine learning involves training an algorithm to recognize patterns in large datasets without providing labelled examples for comparison. One popular approach is a clustering algorithm, which groups similar data into different classes. These algorithms are used for a wide variety of data analyses, such as identifying fake news on social media, filtering spam in our e-mails, and detecting criminal or fraudulent activity online.

“But running clustering algorithms on traditional cores results in high energy consumption and slow processing, because a large amount of data needs to be moved from the computer’s memory to its processing unit, where the machine learning tasks are conducted,” explains Kim.

Scientists have been looking into processing in-memory (PIM) approaches. But most PIM architectures are analog-based and require analog-to-digital and digital-to-analog converters, which take up a huge amount of the computer chip power and area. They also work better with supervised machine learning, which includes labelled datasets to help train the algorithm.

To overcome these issues, Kim and his colleagues developed DUAL, which stands for digital-based unsupervised learning acceleration. DUAL enables computations on digital data stored inside a computer memory. It works by mapping all the data points into high-dimensional space; imagine data points stored in many locations within the human brain.

The scientists found DUAL efficiently speeds up many different clustering algorithms, using a wide range of large-scale datasets, and significantly improves energy efficiency compared to a state-of-the-art graphics processing unit. The researchers believe this is the first digital-based PIM architecture that can accelerate unsupervised machine learning.

“The existing approach of the state-of-the-arts in-memory computing research focuses on accelerating supervised learning algorithms through artificial neural networks, which increases chip design costs and may not guarantee sufficient learning quality,” says Kim. “We showed that combining hyper-dimensional and in-memory computing can significantly improve efficiency while providing sufficient accuracy.”

###

Media Contact
Kwanghoon Choi
[email protected]

Original Source

https://dgist.ac.kr/en/html/sub06/060202.html

Related Journal Article

http://dx.doi.org/10.1109/micro50266.2020.00039

Tags: Computer ScienceRobotry/Artificial IntelligenceSoftware EngineeringTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

ZFP612 Epigenetically Represses Il1rl1 to Alleviate Neuropathic Pain

November 28, 2025
Enhanced Toluene Oxidation with Modified Ceramic Catalysts

Enhanced Toluene Oxidation with Modified Ceramic Catalysts

November 28, 2025

Eye Tracking for Early ASD Diagnosis: A Large Study

November 28, 2025

Targeting Skin Cancer with Irinotecan Nanocarriers

November 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    105 shares
    Share 42 Tweet 26
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ZFP612 Epigenetically Represses Il1rl1 to Alleviate Neuropathic Pain

Enhanced Toluene Oxidation with Modified Ceramic Catalysts

Eye Tracking for Early ASD Diagnosis: A Large Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.