• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, February 26, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo

Bioengineer by Bioengineer
January 15, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Sicong Wang, Chen Wei, Yuanhua Feng, Hongkun Cao, Wenzhe Li, Yaoyu Cao, Bai-Ou Guan, Arata Tsukamoto, Andrei Kirilyuk, Alexey V. Kimel, and Xiangping Li

The development of ultrafast all-optical switches has long been a popular topic in photonics, while the speed of magnetization reversal triggered by means other than magnetic fields has recently attracted intense interest in spintronics. The discovery of all-optical helicity-dependent switching in metallic GdFeCo has promised a merger of the fields of photonics and spintronics, paving the way for faster and more energy-efficient information processing technologies. However, the real potential of all-optical switching is still poorly understood because it is still unclear whether magnetic switching by light can keep up with the GHz frequencies required by photonics technologies. Another serious obstacle is the skepticism regarding the scalability of all-optical magnetic switching down to the sizes of spintronic devices, which are well below the diffraction limit.

In a new paper published in Light: Science & Applications, a team of scientists, led by Professor Xiangping Li at Jinan University in China and Professor Alexey V. Kimel at Radboud University in The Netherlands have proposed a dual-shot opto-magnetic switching method and studied its dynamics through a time-resolved magneto-optical imaging system. They experimentally unveiled the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, they revealed the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, they demonstrated an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.

These scientists forecast: “Our findings demonstrate the potential of all-optical magnetic writing with a repetition rate of up to 3 GHz and a spatial resolution below the diffraction limit, which fills a knowledge gap and completes missing technology to promote its widespread applicability in the next revolution of information processing. The advanced features observed in this work may favour the realization of spatially and temporally confined magnetization control through light and greatly promote the development of ultrafast and highly compact devices at the intersection of photonics and spintronics.”

###

Media Contact
Alexey V. Kimel
[email protected]

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

From microsaws to nanodrills: laser pulses act as subtle machining tools

February 26, 2021
IMAGE

Samara Polytech scientists have patented the TopCryst.Find_Topology service

February 26, 2021

Novel catalysts improve efficiency of urea synthesis at ambient conditions

February 26, 2021

URI researchers: Microbes deep beneath seafloor survive on byproducts of radioactive process

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyChemistry/Physics/Materials SciencesGeneticsTechnology/Engineering/Computer ScienceMaterialsInfectious/Emerging DiseasesEcology/EnvironmentCell BiologycancerClimate ChangePublic HealthMedicine/Health

Recent Posts

  • From microsaws to nanodrills: laser pulses act as subtle machining tools
  • Samara Polytech scientists have patented the TopCryst.Find_Topology service
  • Explainable AI: A must for nuclear nonproliferation, national security
  • Novel catalysts improve efficiency of urea synthesis at ambient conditions
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In