• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Drug for pancreatic cancer developed by college of pharmacy researchers

Bioengineer by Bioengineer
September 11, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Houston

A treatment for highly aggressive and commonly fatal pancreatic cancer is being developed, reports a University of Houston researcher who has designed a new medicine that can inhibit two of the major pathways of the deadly disease. Ruiwen Zhang, M.D., Ph.D. and Robert L. Boblitt Endowed Professor in Drug Discovery, has published his findings, along with research associate professor of pharmacology Wei Wang, M.D., Ph.D., in Cancer Research Journal.

"There is an unmet clinical need for new, effective and safe drugs for pancreatic cancer therapy. Our discovery represents a significant advance in cancer research," said Zhang. "Most drugs only target one factor. We identified a single compound that targets two linked genes that cause cancer."

The drug would be a first-in-class, new therapy for pancreatic cancer and a new conceptual framework for developing other drugs.

Pancreatic cancer is characterized by early metastasis and a poor response to chemotherapy. Gemcitabine, a chemotherapy drug with only modest clinical benefit, remains one of the mainstays of treatment for advanced pancreatic cancer. Although various multidrug regimens that combine gemcitabine with other chemotherapeutic or molecular-targeted agents have been evaluated, only three combination regimens have been approved by the Food and Drug Administration, and most of them failed to significantly prolong the survival of patients with pancreatic cancer in clinical trials. Stromal depletion and immunotherapy also have been proposed to offer substantial promise for treating advanced pancreatic cancer, but their therapeutic impact remains unclear.

The two cancer-causing genes linked in pancreatic cancer are nuclear factor of activated T cells1 (NFAT1) and murine double minute 2 (MDM2), a gene that regulates (and depletes) the tumor suppressor gene called p53. If there is no tumor suppressor p53 present, MDM2 will cause cancer on its own. NFAT1 up-regulates MDM2 expression and encourages tumor growth.

"We developed a synthetic compound that we call MA242, and it can deplete both proteins at the same time increasing specificity and efficiency of tumor killing," said Zhang. "In our molecular modeling study, MA242 is a potent dual inhibitor." Though it is man-made, the new compound is based on a type of sea sponge.

Patients with pancreatic cancer have too much MDM2 and NFAT1, which has left these genes as open targets for cancer therapy. Numerous studies have shown reduced MDM2 can lead to decreased tumor growth and progression.

Heathy individuals have low levels of MDM2 and NFAT1, but diet, nutrition and environment can cause higher levels in cells, said Zhang. In previously published work, Zhang revealed that certain natural foods and products, like broccoli, soybeans, green tea and turmeric, have shown potential for cancer prevention and therapy.

###

Media Contact

Laurie Fickman
[email protected]
713-743-8454
@UH_News

http://www.uh.edu/news-events

Original Source

http://www.uh.edu/news-events/stories/2018/september-2018/091118-pancreatic-cancer-drug.php http://dx.doi.org/10.1158/1538-7445.AM2018-4863

Share24Tweet7Share2ShareShareShare1

Related Posts

Persistent Cough Reveals Mysterious Endobronchial Mass

September 19, 2025

2025 Ig Nobel Prize Awarded for Perfecting the Science of Pasta Sauce

September 19, 2025

Uncovering Cancer Disparities Among Racial Groups

September 19, 2025

Validating Exercise Prescription for Older Adults

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

2025 Ig Nobel Prize Awarded for Perfecting the Science of Pasta Sauce

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.