• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Drug could alleviate side effects of chemo for breast cancer patients

Bioengineer by Bioengineer
March 14, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Stanford University School of Medicine have demonstrated a method of forecasting which breast cancer patients will suffer heart problems from a commonly used chemotherapy drug.

The researchers also found that a class of medications already approved by the Food and Drug Administration may mitigate these side effects.

“We could use this method to find out who’s going to develop chemo-related toxicity and who’s not,” said Joseph Wu, MD, PhD, professor of cardiovascular medicine and of radiology and director of the Stanford Cardiovascular Institute. “And now we have an idea about the cardioprotective medications we can give them.”

A paper describing the work will be published online March 14 in Circulation. Wu, who is the Simon H. Stertzer, MD, Professor, is the senior author. Former research fellow Tomoya Kitani, MD, now a clinical assistant professor at the Kyoto Prefecture University of Medicine in Japan, is the lead author.

Between 15 and 20 percent of breast cancer patients have the HER2-positive variety, for which the most effective treatment is the chemotherapy drug trastuzumab, sold under the brand name Herceptin. But trastuzumab also causes more heart problems than other breast cancer drugs; about 15 percent of patients taking it will develop cardiac dysfunction, likely because of a genetic predisposition. The side effects include a reduction in the amount of blood the heart pumps with each contraction and, less commonly but more seriously, heart failure. Except for quitting trastuzumab, there currently is no treatment for the side effects.

Knowing which patients will develop heart problems — and having medications to treat them — could allow patients to receive the most effective cancer-fighting therapy.

From stem cells to heart cells

The researchers conducted the study in a lab, using blood from three healthy participants and from seven participants with breast cancer, including five who had experienced cardiac dysfunction due to trastuzumab. They derived stem cells from the white blood cells, then coaxed those stem cells to develop into heart cells, or cardiomyocytes.

When they applied trastuzumab to the cells from breast cancer patients who showed heart dysfunction, the cells contracted less vigorously. But when they applied trastuzumab to the cells of breast cancer patients who had not suffered side effects, the cells showed little change. The cells from patients who suffered more severe heart problems in reaction to trastuzumab showed more pronounced weakening than those from patients with less severe problems.

The researchers hypothesize that trastuzumab disrupts the cells’ energy pathway in some patients. “It changes the way the heart cells consume energy,” Wu said.

The researchers then applied medications known as AMPK activators to the weakened cells. This class of medications includes metformin, a drug commonly used to treat Type 2 diabetes. As the researchers expected, the weakened cells ate up more glucose and contracted more vigorously with AMPK activators.

Plan for retrospective study

The researchers plan to follow these findings with a retrospective study of patients who were taking metformin for diabetes while they were receiving trastuzumab for breast cancer. If they find that patients on metformin had fewer cardiac side effects, they hope to conduct a trial to see if giving patients metformin with trastuzumab will show the same results.

Wu said testing drugs on cells in a lab can vastly reduce the time needed to bring drugs to patients, as well as the cost. “You can screen them in a dish first,” he said. “This will significantly cut the cost of drug development, providing better and more affordable drugs to the population.”

The work is an example of Stanford Medicine’s focus on precision health, the goal of which is to anticipate and prevent disease in the healthy and precisely diagnose and treat disease in the ill.

###

Wu is a member of Stanford Bio-X, the Stanford Maternal & Child Health Research Institute and the Stanford Cancer Institute. He is also a faculty fellow at Stanford ChEM-H.

Other Stanford co-authors are postdoctoral scholars Joe Zhang, PhD, Ning Ma, PhD, and Lei Tian, PhD; instructors Chi Lam, PhD, June-Wha Rhee, MD, and Nazish Sayed, MD, PhD; former research fellows Angelos Oikonomopoulos, PhD, and Sang-Ging Ong, PhD; Melinda Telli, MD, associate professor of oncology; and Ronald Witteles, MD, associate professor of cardiovascular medicine.

The work was funded by the National Institutes of Health (grants R01HL123968, R01HL128170, R01HL141851, R01HL132875 and K01HL135455), the Japan Heart Foundation/Bayer Yakuhin Research Grant Abroad, and a Stanford Translational Research and Applied Medicine grant.

Stanford’s Department of Medicine also supported the work.

Print media contact: Mandy Erickson at (650) 723-7628 ([email protected])

Broadcast media contact: Margarita Gallardo at (650) 723-7897 ([email protected])

The Stanford University School of Medicine consistently ranks among the nation’s top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children’s Health. For information about all three, please visit http://med.stanford.edu.

Media Contact
Mandy Erickson
[email protected]

Tags: Medicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

Psychological Resilience Mediates Care in Nursing Interns

October 5, 2025

Revolutionizing Preterm Infant Care in Resource-Limited Settings

October 5, 2025

Rethinking Nonoperative Approaches in Treating Pediatric Uncomplicated Acute Appendicitis

October 5, 2025

Lymphatic System and Inflammatory Cells in Osteoarthritis

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.