• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Dressing up RNA molecules to last

Bioengineer by Bioengineer
March 30, 2022
in Biology
Reading Time: 3 mins read
0
Luísa Figueiredo
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study led by Luísa Figueiredo, group leader at the Instituto de Medicina Molecular João Lobo Antunes (iMM; Portugal) and published today in the prestigious scientific journal Nature describes a new mechanism that decorates the end tails of RNA molecules, and prevents their degradation. This phenomenon, discovered for the first time in Trypanosoma brucei, the parasite that causes sleeping sickness, could be determinant for the virulence of the parasite. This fundamental discovery opens new avenues for treatment strategies for this disease but also for other RNA-based infections/diseases.

Luísa Figueiredo

Credit: Gonçalo Ribeiro, iMM

A new study led by Luísa Figueiredo, group leader at the Instituto de Medicina Molecular João Lobo Antunes (iMM; Portugal) and published today in the prestigious scientific journal Nature describes a new mechanism that decorates the end tails of RNA molecules, and prevents their degradation. This phenomenon, discovered for the first time in Trypanosoma brucei, the parasite that causes sleeping sickness, could be determinant for the virulence of the parasite. This fundamental discovery opens new avenues for treatment strategies for this disease but also for other RNA-based infections/diseases.

“RNA molecules are essentially the “messengers” that take the information encoded in genes to produce the machines that act inside cells of every single living organism, the proteins. But these molecules are mostly unstable, and the life expectancy of RNA molecules is an important determinant of gene expression”, starts to explain the leading researcher, Luísa Figueiredo. “Our lab studies Trypanosoma brucei, the parasite that causes sleeping sickness in humans. We have been keen to understand how this parasite causes disease in humans and cattle. There is a crucial protein in this process called VSG, a major cell-surface protein that has the ability to change periodically to evade the recognition of the parasites by the immune system.”

Now, the team has discovered that the ends of the RNA molecules that will produce the VSG are modified, resulting in a new level of regulation of the lifetime of these molecules. “Before the RNA is degraded, these endings, or tails, are progressively removed by the cell machinery. This is the first step in the degradation of RNA molecules that are no longer needed and is observed across all eukaryotes, including animals, plants, and parasites. What we have found is that in this VSG RNA molecules there is a modification that confers protection to degradation, similar to an “invisibility coat””, adds Idálio Viegas, PhD student and first author of this study. As these modified RNA molecules go unnoticed by the cell machinery, the degradation of the molecules is prevented.

And what is the relevance of this discovery for the infection with this parasite? “The VSG protein has the ability to change periodically to evade the recognition of the parasites by the immune system, and the regulation of the stability of these RNA molecules can be determinant for the virulence of the parasite. Therefore, the discovery of this new step can contribute for the development of new strategies to target sleeping sickness”, states Idálio Viegas.

“This discovery that the tails of RNA can be modified to control the lifetime of the molecules also alters the current perspective in RNA biology, opening new possibilities that have to be studied further. It’s likely that these modifications are also present in other eukaryotes, including humans and probably represent a general mechanism to regulate the lifetime of RNA molecules and gene expression in all eukaryotes, but so far have gone unnoticed”, adds Luísa Figueiredo.

This work was developed at iMM, in collaboration with researchers from the Cornell University (USA), and the University of York (UK). This study was funded by the Howard Hughes Medical Institute and the European Molecular Biology Organization. This work was also partially supported by FEEI – “Fundos Europeus Estruturais e de Investimento” and by national funds from FCT – “Fundação para a Ciência e a Tecnologia”.



Journal

Nature

DOI

10.1038/s41586-022-04544-0

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

N6-methyladenosine in poly(A) tails stabilize VSG transcripts

Article Publication Date

30-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.