• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Dr. Ming Zhou, featured speaker in Solute Carrier Proteins symposium at the NY Academy of Sciences

Bioengineer by Bioengineer
April 25, 2016
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To work properly, the cells in our body use carrier proteins to control the transport of ions, such as potassium, as well as metabolites and nutrients in and out across membranes. The family of solute carrier proteins is the largest class of membrane transporters, and some of its members have been associated with diseases, including diabetes, cancer and autism. Many researchers consider carrier proteins highly relevant targets for drugs, but this possibility has not been explored in detail.

Dr. Ming Zhou, the Ruth McLean Bowman Bowers Professor in the Verna and Marrs McLean department biochemistry and molecular biology at Baylor College of Medicine, is a featured speaker in the upcoming symposium "Solute Carrier Proteins: Unlocking the Gene-Family for Effective Therapies."

The event, presented by the Biochemical Pharmacology Discussion Group at the New York Academy of Sciences, aspires to bring more attention to solute carrier proteins. The symposium will highlight recent advances in the field, both in terms of relevance to drug development and understanding of mechanisms of the transporters, and will bring together investigators from both academia and industry to promote exchange of ideas and collaborations.

Zhou will present a talk about one of his research interests related to the topic, "Mechanism of substrate binding and translocation in sodium-dependent bile acid transporters."

Bile acids, also called bile salts, are important metabolites synthesized in the liver from cholesterol. Bile salts are stored in the gallbladder and, after each meal, several grams are released from the gallbladder into the digestive tract to facilitate absorption of fat and certain vitamins. At the end of the digestive tract in the terminal ileum, more than 90 percent of the bile salts are reabsorbed and sent back to the liver and then the gallbladder. This, the enterohepatic circulation of bile salts, is a very efficient process so that each day, only a small amount of bile acid is synthesized to replenish the pool.

"The reabsorption of bile salts at the terminal ileum is mediated by a solute carrier protein, the apical sodium-dependent bile acid transporter, or ASBT, which is a potential drug target for two reasons," said Dr. Zhou. "Drugs that inhibit ASBT could reduce the amount of recycled bile acid and thus increase the consumption of cholesterol. In addition, drugs could be conjugated to a bile acid, forming a pro-drug that can be transported by ASBT for targeted delivery to the liver. Our research is aimed at understanding how ASBT interacts with its substrates and how substrates are transported from the extracellular side to the intracellular side."

The symposium will also be an opportunity for experts in the field to discuss technologies to produce, characterize and research solute carrier proteins, including generating cell lines with functionally competent carrier proteins and strategies to unravel their structure and interaction with substrates.

The symposium will take place on April 26 at the New York Academy of Sciences, New York. More information and how to register in this symposium can be found here.

###

Media Contact

Dipali Pathak
[email protected]
713-798-4710
@bcmhouston

https://www.bcm.edu/news

The post Dr. Ming Zhou, featured speaker in Solute Carrier Proteins symposium at the NY Academy of Sciences appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

Cachexia Index Predicts Gastric Cancer Impact

Cachexia Index Predicts Gastric Cancer Impact

August 9, 2025
blank

Sericin Silver Nanoparticles Combat Colorectal Cancer Effectively

August 9, 2025

Immune Checkpoint Inhibitors Linked to Heart Inflammation

August 9, 2025

Circulating Hsp70 Signals Early Thoracic Cancer Spread

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uranium Complex Converts Dinitrogen to Ammonia Catalytically

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.