• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Double-layered catalyst generates more hydrogen

Bioengineer by Bioengineer
June 21, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The average office worker often endures pain in many parts of the body as a side effect to sedentary desk jobs. It is not rare to see even young people suffer from shoulder pain, which previously had been mainly experienced by older people. Once shoulder pain is inflicted, changing clothes, let alone freely moving parts of the body, is difficult. Falling asleep is also not easy. While the rotator cuffs are commonly damaged naturally with aging, regenerating it has proved to be challenging.

A POSTECH research team, comprised of Professor Dong-Woo Cho and Dr. Suhun Chae in the Department of Mechanical Engineering, and Professor Jinah Jang and Ph.D. candidate Uijung Yong in the Department of Convergence IT Engineering, has developed a complex tissue platform that can restore damaged rotator cuffs through a joint study with Professor Hak Soo Choi inthe Harvard Medical School. Tissue-specific extracellular matrix bioink is used to 3D-bioprint this platform, which can accurately mimic the complex structure of rotator cuffs.

This research outcome, which can give new hope to patients suffering from chronic shoulder pain, was recently published in the international journal Bioactive Materials.

The research team transplanted this platform to rats with full-thickness tears of the rotator cuffs, and observed regeneration of their tissues and shoulder function recovery. As a result, it was confirmed that this platform, which includes stem cells, can indeed regenerate rotator cuffs.

Notably, the team succeeded in visualizing this process by using near-infrared fluorescence imaging coupled with tissue-specific bioimaging agents. With this, the researchers were able to monitor anatomic change and regeneration processes in the animal model in real time in a non-invasive manner.

This platform offers a microenvironment and components similar to those of the actual tissue. Therefore, once applied to patients, it is expected to have high treatment benefits and eventual recovery of shoulder function. It is particularly beneficial for those patients who cannot use autologous tissues to regenerate rotator cuffs by providing a customized treatment option.

This study was supported by the Nano-materials Core Technology Development project of the National Research Foundation of Korea and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in the U.S.

Figure 1

Credit: POSTECH

The average office worker often endures pain in many parts of the body as a side effect to sedentary desk jobs. It is not rare to see even young people suffer from shoulder pain, which previously had been mainly experienced by older people. Once shoulder pain is inflicted, changing clothes, let alone freely moving parts of the body, is difficult. Falling asleep is also not easy. While the rotator cuffs are commonly damaged naturally with aging, regenerating it has proved to be challenging.

A POSTECH research team, comprised of Professor Dong-Woo Cho and Dr. Suhun Chae in the Department of Mechanical Engineering, and Professor Jinah Jang and Ph.D. candidate Uijung Yong in the Department of Convergence IT Engineering, has developed a complex tissue platform that can restore damaged rotator cuffs through a joint study with Professor Hak Soo Choi inthe Harvard Medical School. Tissue-specific extracellular matrix bioink is used to 3D-bioprint this platform, which can accurately mimic the complex structure of rotator cuffs.

This research outcome, which can give new hope to patients suffering from chronic shoulder pain, was recently published in the international journal Bioactive Materials.

The research team transplanted this platform to rats with full-thickness tears of the rotator cuffs, and observed regeneration of their tissues and shoulder function recovery. As a result, it was confirmed that this platform, which includes stem cells, can indeed regenerate rotator cuffs.

Notably, the team succeeded in visualizing this process by using near-infrared fluorescence imaging coupled with tissue-specific bioimaging agents. With this, the researchers were able to monitor anatomic change and regeneration processes in the animal model in real time in a non-invasive manner.

This platform offers a microenvironment and components similar to those of the actual tissue. Therefore, once applied to patients, it is expected to have high treatment benefits and eventual recovery of shoulder function. It is particularly beneficial for those patients who cannot use autologous tissues to regenerate rotator cuffs by providing a customized treatment option.

This study was supported by the Nano-materials Core Technology Development project of the National Research Foundation of Korea and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in the U.S.



Journal

Bioactive Materials

DOI

10.1016/j.bioactmat.2022.05.004

Article Title

3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration

Article Publication Date

11-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Gladstone graduate student working with an electrode array to study brain samples.

Pathway deep in the brain makes it resilient after injury

July 6, 2022
Retinal functions

NIH researchers decode retinal circuits for circadian rhythm, pupillary light response

July 6, 2022

What causes the brain’s emotional hub to switch to negative states?

July 6, 2022

Women earn less than men overall, but the gender pay gap is smaller in occupations with a higher ratio of male employees, according to study of over 6,000 Germans

July 6, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccineUrbanizationUniversity of WashingtonVirusWeaponryVehiclesZoology/Veterinary ScienceVaccinesUrogenital SystemVirologyViolence/CriminalsWeather/Storms

Recent Posts

  • Bees’ ‘waggle dance’ may revolutionize how robots talk to each other in disaster zones
  • Killing resistant prostate cancer with iron
  • Less sex during menopause transition not linked to sexual pain
  • Climate factors predict future mosquito activity
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....