• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Dopamine helps with math rules as well as mood

Bioengineer by Bioengineer
December 7, 2014
in Neuroscience
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The chemical messenger dopamine – otherwise known as the happiness hormone – is important not only for motivation and motor skills. It seems it can also help neurons with difficult cognitive tasks. Torben Ott, Simon Jacob and Professor Andreas Nieder of Tübingen’s Institute for Neurobiology have demonstrated for the first time how dopamine influences brain cells while processing rules. You can read the study in full in the early online edition of Neuron.

Dopamine helps with math rules as well as mood

Nerve cells in the prefrontal cortex (marked) can process “greater than” and “less than” rules better under the influence of dopamine. Photo Credit: LS Tierphysiologie/University of Tübingen

The effects of dopamine become very clear when the brain gets too little of it, as is the case with Parkinson’s disease. A dopamine imbalance leads to varied neurological disruptions – particularly movement – but also mental abilities. Our key cognitive center, the prefrontal cortex, which we use for abstract thought, rule-based decisions and logical conclusions, is intensively supplied with dopamine. Despite its major medical significance, we know little about dopamine’s effects on information processing by neurons in the healthy brain.

To test this, the researchers trained rhesus monkeys to solve “greater than” and “less than” math problems. From other recent studies, the researchers knew that certain neurons in the prefrontal cortex answer such questions – one half of these “rule cells” was only activated when the “greater than” rule applied, and the other half was only activated when the “less than” rule applied.

Meanwhile, physiologically small amounts of various substances were being discharged near the relevant cells. These substances can have the same effect as dopamine – or the opposite effect – and could be adsorbed by dopamine-sensitive neurons. The surprising result was that stimulation of the dopamine system allowed the “rule cells” to perform better and to more clearly distinguish between the “greater than” and “less than” rules. Dopamine had a positive effect on the “rule cells’” quality of work.

The study provides new insight into how dopamine influences abstract thought processes needed, for instance, to apply simple mathematical rules. “With these findings, we are just starting to understand how nerve cells in the prefrontal cortex produce complex, goal-directed behavior,” says Ott. Along with a better understanding of the foundations of information processing in this important part of the brain, the results could have medical significance. “These new insights help us to better interpret the effects of certain medicines which may be used for instance in cases of severe psychological disturbance,” says Professor Nieder, “because such medications influence the dopamine balance in the prefrontal cortex in ways we do not understand well to date.”

Story Source:

The above story is based on materials provided by Universitaet Tübingen.

Share12Tweet8Share2ShareShareShare2

Related Posts

Redox biomarker could predict progression of epilepsy

October 5, 2016

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Next-Gen Glucose Sensors: Polyaniline Innovations

Hippocampal Sharp-Wave Sleep Distinct from Cortex

Transcription Co-Inhibition Boosts TB Drug Effectiveness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.