• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, September 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DNAmFitAge: Biological age indicator incorporating physical fitness

Bioengineer by Bioengineer
June 7, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“We expect DNAmFitAge will be a useful biomarker for quantifying fitness benefits at an epigenetic level and can be used to evaluate exercise-based interventions.”

Figure 2

Credit: 2023 McGreevy et al.

“We expect DNAmFitAge will be a useful biomarker for quantifying fitness benefits at an epigenetic level and can be used to evaluate exercise-based interventions.”

BUFFALO, NY- June 7, 2023 – A new research paper was published in Aging (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science) Volume 15, Issue 10, entitled, “DNAmFitAge: biological age indicator incorporating physical fitness.”

Physical fitness is a well-known correlate of health and the aging process and DNA methylation (DNAm) data can capture aging via epigenetic clocks. However, current epigenetic clocks did not yet use measures of mobility, strength, lung, or endurance fitness in their construction. 

In this new study, researchers Kristen M. McGreevy, Zsolt Radak, Ferenc Torma, Matyas Jokai, Ake T. Lu, Daniel W. Belsky, Alexandra Binder, Riccardo E. Marioni, Luigi Ferrucci, Ewelina Pośpiech, Wojciech Branicki, Andrzej Ossowski, Aneta Sitek, Magdalena Spólnicka, Laura M. Raffield, Alex P. Reiner, Simon Cox, Michael Kobor, David L. Corcoran, and Steve Horvath from the University of California Los Angeles, University of Physical Education, Altos Labs, Columbia University Mailman School of Public Health, University of Hawaii, University of Edinburgh, National Institute on Aging, Jagiellonian University, Pomeranian Medical University in Szczecin, University of Łódź, Central Forensic Laboratory of the Police in Warsaw, Poland, University of North Carolina at Chapel Hill, University of Washington, and University of British Columbia develop blood-based DNAm biomarkers for fitness parameters including gait speed (walking speed), maximum handgrip strength, forced expiratory volume in one second (FEV1), and maximal oxygen uptake (VO2max) which have modest correlation with fitness parameters in five large-scale validation datasets (average r between 0.16–0.48). 

“These parameters were chosen because handgrip strength and VO2max provide insight into the two main categories of fitness: strength and endurance [23], and gait speed and FEV1 provide insight into fitness-related organ function: mobility and lung function [8, 24].”

The researchers then used these DNAm fitness parameter biomarkers with DNAmGrimAge, a DNAm mortality risk estimate, to construct DNAmFitAge, a new biological age indicator that incorporates physical fitness. DNAmFitAge was associated with low-intermediate physical activity levels across validation datasets (p = 6.4E-13), and younger/fitter DNAmFitAge corresponds to stronger DNAm fitness parameters in both males and females. 

DNAmFitAge was lower (p = 0.046) and DNAmVO2max is higher (p = 0.023) in male body builders compared to controls. Physically fit people had a younger DNAmFitAge and experienced better age-related outcomes: lower mortality risk (p = 7.2E-51), coronary heart disease risk (p = 2.6E-8), and increased disease-free status (p = 1.1E-7). These new DNAm biomarkers provide researchers a new method to incorporate physical fitness into epigenetic clocks.

“Our newly constructed DNAm biomarkers and DNAmFitAge provide researchers and physicians a new method to incorporate physical fitness into epigenetic clocks and emphasizes the effect lifestyle has on the aging methylome.”
 

Read the full study: DOI: https://doi.org/10.18632/aging.204538 

Corresponding Authors: Kristen M. McGreevy, Zsolt Radak, Steve Horvath

Corresponding Emails: [email protected], [email protected], [email protected] 

Keywords: epigenetics, aging, physical fitness, biological age, DNA methylation

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204538

 

About Aging-US:

Launched in 2009, Aging publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at www.Aging-US.com​​ and connect with us:

  • SoundCloud
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LabTube
  • LinkedIn
  • Reddit
  • Pinterest

 

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.204538

Method of Research

Experimental study

Subject of Research

People

Article Title

DNAmFitAge: biological age indicator incorporating physical fitness

Article Publication Date

31-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

A few essential genetic differences tailor flowers to bee or hummingbird pollinators

A few essential genetic differences tailor flowers to bee or hummingbird pollinators

September 28, 2023
Fossil shell

A turtle time capsule: DNA found in ancient shell

September 28, 2023

Ireland-Uganda partnership awarded €1 million funding to tackle sepsis in babies

September 28, 2023

Watch how hammerhead sharks get their hammer

September 28, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Few eligible patients get access to publicly funded weight management programs in England

Ethics rules needed for human research on commercial spaceflights, panel says

A few essential genetic differences tailor flowers to bee or hummingbird pollinators

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In